

Bayesian Optimization of Laser-Plasma Accelerators

- S. Jalas^{*1}, M. Kirchen², P. Messner², P. Winkler², L. Hübner², J. Dirkwinkel², M. Schnepp¹, R. Lehe³, A. R. Maier²
- ¹Center for Free-Electron Laser Science & Department of Physics, Hamburg University, Hamburg, Germany
- ²Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany
- ³Lawrence Berkeley National Laboratory, Berkeley, CA

LUX Plasma Source

High quality electron beams from localized ionization Injection

Bayesian Optimization

Model based optimization of costly and noisy black-box functions

Use-case

- Evaluations (PIC simulation, experiment, ...) are expensive
- Problem is not convex (local optima)
- Observations are noisy

Concept

- Approximate problem with cheap surrogate model
- Define acquisition function from model predictions and uncertainties
 - Quantifies value of potential measurement in finding the global maximum

Complex parameter space allows precise tuning of phase space dynamics

- Gas dynamics at vacuum outlet prevents separation of gases from two separate inlets
- Separation of mixed gas for injection and pure Hydrogen for acceleration
- Control over mixing ratio and gas density allows to match beam current to wakefield evolution
- Optimal beam loading conditions when laser, plasma and bunch parameters are matched

M. Kirchen et al. Optimal beam loading in a laser-plasma accelerator PRL 126, 174801 (2021)

Experimental Results

Autonomous optimization of the LUX accelerator to sub-percent energy spread

Bayesian optimization of energy spread and beam

 Evaluate real problem with parameters that give largest acquisition function value

Bayesian optimization of a laser-plasma accelerator PRL 126, 104801 (2021)

Complex input parameter space
more than 10⁶
combinations for required scan resolution

 Need to find setup that provides minimal energy spread and high charge

LPA optimization with noisy online beam measurements

- Train surrogate model with single shot data
- Tune machine with feedback controlled actuators
- Start with random machine settings
- Accelerator autonomously searches and finds set-point that gives **sub-percent energy spread**.

0 (g) 0 10 20 30 40 iteration

Autonomous optimization of the energy spread and charge at LUX.

50

unpublished content

*soeren.jalas@desy.de

This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.

EuroNNAc special topics workshop | September 2022