Energy Compression and Stabilization of Laser-Plasma Accelerators

<u>A. Ferran Pousa ¹, I. Agapov ¹, S. A. Antipov ¹, R. W. Assmann ^{1,2}, R. Brinkmann ¹, S. Jalas ³, M. Kirchen ¹, W. Leemans ^{1,3}, A. R. Maier ¹, A. Martinez de la Ossa ¹, J. Osterhoff ¹, M. Thévenet ¹</u>

¹ Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany ² also at Laboratori Nazionali di Frascati, Frascati, Italy ³ Department of Physics Universität Hamburg, Hamburg, Germany

Laser-plasma accelerators suffer from large energy spread and jitter

- **Compact**, cm-scale sources of electron beams with up to **GeV** energy, **kA** current and **fs** duration^[1,2].
- Currently limited in applications due to large energy spread and jitter in the few-percent range.
- Major challenge: demonstrate energy spread and energy jitter ≤0.1% rms for applications such as

FEL demonstration at SIOM^[3]

LUX facility at DESY^[4]

free-electron lasers (FELs) or storage ring injectors.

0.2-1.2% energy spread, \leq 3% energy jitter (rms).

1.2% energy spread, 1.9% energy jitter (rms) (under optimized conditions)^[5]

New solution: development of a plasma-based energy compressor

Simulations demonstrate outstanding performance

Under idealized conditions Initial Gaussian electron beam with imprinted energy jitter

Beam evolution in the APD.

For more details, see publication:

Under highly realistic conditions

Full start-to-end simulations with realistic LPA and jitters

A. Ferran Pousa et al., Phys. Rev. Lett. **129**, 094801 (2022)

Deutsches Elektronen-Synchrotron DESY

Ein Forschungszentrum der Helmholtz-Gemeinschaft

References

[1] Gonsalves, A. J., et al. *Phys. Rev. Lett.*, 122.8 (2019)
[2] Lundh, O., et al. *Nat. Phys.* 7, 219 (2011).
[3] Wang, W et al., *Nature*, 595.7868 (2021)
[4] Maier, A. R., et al. *Phys. Rev. X*, 10.3 (2020)
[5] Kirchen, M., et al. Phys. Rev. Lett. 126.17 (2021)

