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Prototyping Accelerator based on Laser-pLASma technology [1]

Participation to R&D Technical Design 
Report in preparatory phase on high-quality 
laser-plasma injector (LPI) for EUPRAXIA
Horizon 2020 European project [2]
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accelerator facility

Advanced 

laser control

LaseriX platform [3] 
provides on target:
- 1,5J & 35 fs -> 40TW 
- 10 Hz
- w0 ≈ 20 µm
- a0 ≈ 1,2

Ionisation injection 

assisted by 

density modulation 

150-200 MeV
30 pC
10Hz
1 mm.mrad
ΔE/E <5%
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Zone 1 Injection zone Zone 2

Zone 1: laser autofocalisation
Between 1 and 2: injection of the two last e- of N2 (N5+-> N6+ + e- , N6+->N7++ e-) when a0

high enough, stops when there is no dopant.
Zone 2: energy filter, acceleration and preservation of emittance (avoid explosion)

Plasma cell scheme

Injection principle

Optimisation process

p1 p2

Laser a0 (red lines) in vacuum and in plasma along longitudinal axis (laser travels from left to right). 

Overall electron density (blue solid line) and dopant electron density (blue dotted line) assuming 

full ionisation. a0 threshold for 6th and 7th electron ionisation of N are marked in red dotted line. 
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Model, mesh and solver

Simulation software: OpenFOAM [12][13] (CFD, OpenSource)

Meshing: automatic using snappyHexMesh on .stl design file

Solver: rhoPimpleFoam (transient solver for turbulent flow of compressible fluids)

Number of cells: 70 000

Simulation time: a few hours (depending on fluid and input pressure), 1CPU

Boundary conditions: inlet pressure, outlet volumetric flow

Cell design

Two-gas prototype Longitudinal cut

Design zoomed in
Zone 2Zone 1

LaserHe+N2 He

Calibration and results

P1 P2

P3
P0

Comments :
Good for N2 for all input pressure (validity limit reached 
when vacuum < 1 mbar)
Good for He at low pressure
Missing data for He at high pressure:
- thiner cells required… then Courant Number explodes !
- simulations are very long (maybe not stationnary yet ?)
Hard to exactly know cell dimensions (material wear)  

Gas injected in chamber 2 

for calibration

Central diameter not strongly changing 
leak from chamber 1 to chamber 2

Pressure gap between P1 & P2

not changing plateau shape

Example of results from Random Scan in 5-D space (p1, p2, cN2, xfoc_vac , a0)
(assuming dopant confinement in 1st chamber)

N2 with 
P2 ∈ [0;121] mbar

He with 
P2 ∈ [0;30] mbar

Pressure probe locations (P0, P1, P2, P3)

Predictions from fluid simulationsCalibration
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Dopant confinement
Conclusion

PIC simulations

Interrogation: since chamber 1 is under higher pressure than chamber 
2 (see best configurations from random scan 1), will the dopant N2

remain in chamber 1 ?
Experiment: He injected in chamber 1, N2 injected in chamber 2. 
Measurement of N2 emission to see confinement at different pressure 
differences ΔP between chamber 1 and 2.
Results: if ΔP = P1 – P2 < 2 mbar, N2 is confined (diffusion does not 
seem to be problematic). For higher ΔP, strong leak from 1 to 2 
(convection and diffusion)
-> new pressure profile, with P1 = P2 but ne,1≠ne,2 by varying cN2 (no 
convection, only diffusion)

Positive results:
- Calibration of simulation with experimental data
- OpenFOAM simulations in combination with fast PIC simulations allow 

for the optimisation of a 2 chamber gas cell
-> PIC-simulated electron beams acceptable

Problems encountered:
- Hard to mesh (even wih automatic meshing tools) complex geometries
- In a 2 chamber gas cell, if the dopped chamber is under excess pressure 

(a few mbar), one can expect leaks (convection and/or diffusion) 
-> essential to stop the injection.

- Present design uses a lot of metal, is hard to align and wears out very 
quickly. 

Conclusion:
- New design to come ([6][14]) to facilitate fluid simulation meshing and 
prevent diffusion and convection of dopant from chamber 1 to chamber 2.
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