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Laser-plasma accelerators are rapidly developing to produce high-quality sub-GeV electron beams capable of Free Electron Laser (FEL) operation. Their reduced size and cost with
respect to conventional accelerators can widely spread the use of particle beams in medical physics and industry. Although multi-GeV electron energies were demonstrated [1], more
work Is needed to establish the high quality acceleration in this energy range. The Resonant Multi-Pulse lonization (ReMPI) injection scheme [2] aims to produce FEL quality electron
bunches with existing ultrashort and ultraintense laser systems, combining the advantages of the multi-pulse acceleration [3] and the two-color injection [4].

Here we report on how to produce a multi-pulse driver for the ReMPI| scheme focusing the laser beams generated via wavefront division of a single ultrashort pulse by a glass delay
mask, which demonstrated to have the right features to be used for ReMPI. A spatio-temporal characterization of the pulse train obtained with this method is presented. An experimental
scheme to detect the effectiveness of the delay mask in triggering a resonant wake excitation, based on a density scan of the gas-jet target, was modelled and it will be discussed In

detall.

ReMPI injection scheme

Resonant Multi-Pulse lonization injection (ReMPI):
electron acceleration scheme for high-quality
electron bunches

Tunable injection by a single ultrashort pulse:
- pulse train driver

- resonant wave excitation

- higher-harmonics ionization pulse

- low-emittance injection

Multi-pulse driver and ionization pulse
from the same Ti:Sa ultrashort pulse

Pulse train measurement

Pllasma wave

Spatio-temporal characterization of the pulse train generated by
a 2-pulses delay mask before and after the OAP focusing.

Results:

- Clearly visible temporal and spatial separation
- Negligible pulse stretching

- Expected peak intensity

- Non-invasive diffraction
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Objectives:

1. two pulses with the same
peak intensity in the OAP
focus

2. delay equal to the plasma
wavelength

Advantages:
flexible design
no energy losses
Off-axis small occupied volume
parabola
easy to use
cheap

gas nozzle only one laser needed
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Detection of the resonant excitation

Simulated plasma wave excitation at n, = 4-1017 e~ /cm?3

by the single and the multi-pulse driver
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Conclusions

Pulse train by a delay mask:
- Temporal and spatial profile with desired features
- Non-invasive diffraction

- Negligible pulse stretching

Density scan for a mixture of 96% He and 4% Ar
for the 100 TW pulse train with a, = 1.7 without the
lonization pulse

Search for the trapping from only the second
plasma wave and comparison with respect to a
single pulse

Delay between pulses of 52.4 ym matched for
4-10'7 e~ lcm?

Delay = 24, for 16:10' e~ /cm?

- Complete separation of the two pulses

- High sensitivity to the input beam shape

Simple experimental setup to detect the resonant wave excitation
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