Monochromatic shadowgraphy and mid-infrared probing of LWFA
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Motivation
* Laser wakefield accelerator (LWFA): a more compact and less expensive electron accelerator gives shorter electron bunch duration and lower emittance compared to conventional rf accelerators
* Challenges of LWFA: pointing stability, energy and charge spread, etc.

 To overcome these challenges: a better understanding of the injection and acceleration mechanism can be provided by the comparison of complex simulations and direct observations

Laser Wakefield Acceleration

* Proposed by Tajima and Dawson in 1979 [1]
e [llustration of LWFA in
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* A high-intensity laser pulse (> 1018 W/cm?) propagates through an underdense plasma, the ponderomotive force of the laser pulse
expels electrons from high intensity region, forming periodic charge separation, so-called laser wakefield

* This charge separation gives an extremely high longitudinal electric field (> 100 GV/m @ n,~10'® cm™3)

 Background electrons can be injected and accelerated by this longitudinal electric field to very high energy (~GeV) over a short distance
~ 8.75% 1018 cm™3 @ 800 nm

Few-cycle femtosecond NIR optical pulse generation Few-cycle pulse characterization

Due to the ultra short pulse duration (< 4 fs, FWHM), conventional fs pulse characterization

i - [3]
Schematic of the few-cycle probe setup methods such as FROG, SPIDER, and Wizzler are limited
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Ultrafast shadowgraphy of LWFA: previous results Motivation: SWIR probing

* LWFA energy gain [8!; * For alower plasma density:

3D PIC simulation of LWFA process including a Experimental shadowgrams at various positions larger A, ops — More sensitivity

few-cycle probe, imaging optics and detector [ in a He plasma: n, = 1.65 x 101° cm™3, pump AE[GeV] = 1_7(%)1/3(%35_%)2/3(%)4/3 )
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Preliminary results of SWIR shadowgraphy:
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Monochromatic shadowgraphy | | | o
* Ongoing project @ JETi 200 Motivation:

Post-Interaction filtering: : :
Motivation: avoid chromatic aberration, ND 2.0 (raw data) :  SWIR probing of laser-plasma has been proved in principle A way toward? fe‘{V'CVde mld—IR pulse:
_ E self-compression in bulk material [11]

suppress plasma emission, ... i probe | * Previous pump-probe study: probe spectrum is closely related to the
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* Imaging system o (compare to [3])
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