
• Schematic of the few-cycle probe setup [3]

air plasma, 𝜏𝐹𝑊𝐻𝑀 = 56.7 ± 0.5 𝑓𝑠
𝑛𝑒 ≈ 4.94 × 1019 cm−3

Monochromatic shadowgraphy and mid-infrared probing of LWFA

• Laser wakefield accelerator (LWFA): a more compact and less expensive electron accelerator gives shorter electron bunch duration and lower emittance compared to conventional rf accelerators

• Challenges of LWFA: pointing stability, energy and charge spread, etc. 

• To overcome these challenges: a better understanding of the injection and acceleration mechanism can be provided by the comparison of complex simulations and direct observations
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Ultrafast shadowgraphy of LWFA: previous results

Monochromatic shadowgraphy
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• Proposed by Tajima and Dawson in 1979 [1]

• A high-intensity laser pulse (> 1018 W/cm2) propagates through an underdense plasma, the ponderomotive force of the laser pulse 
expels electrons from high intensity region, forming periodic charge separation, so-called laser wakefield

• This charge separation gives an extremely high longitudinal electric field (> 100 GV/m@ 𝑛𝑒~10
18 cm−3) 

• Background electrons can be injected and accelerated by this longitudinal electric field to very high energy (~GeV) over a short distance
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• Split off a fraction from the main pulse, therefore probe 
pulses are intrinsically synchronized to the main pulse

• Reduce the size by a reverse bull’s eye apodizing aperture

• Spectral broadened by self-phase modulation (SPM) inside 
an Argon or Neon filled hollow core fiber (HCF)

• Group delay dispersion compensated by chirp mirror pairs 
and glass wedges

• Resulting NIR ultrafast probe laser pulse (central 
wavelength @ 800 nm) with a duration < 4 fs (FWHM) 
and an energy ~300 μJ

• Due to the ultra short pulse duration (< 4 fs, FWHM), conventional fs pulse characterization 
methods such as FROG, SPIDER, and Wizzler are limited 

• Two methods to characterize few-cycle femtosecond pulses:

• Stereo ATI Phasemeter, 3600 pulses are measured, 
over 86% of pulses are < 4 fs (FWHM) [4]

• Schematic of a discrete dispersion scan (d-scan) 
setup [5]

• 3D PIC simulation of LWFA process including a
few-cycle probe, imaging optics and detector [6]

• Experimental shadowgrams at various positions 
in a He plasma:  𝑛𝑒 = 1.65 × 1019 cm−3, pump 
pulse 𝑎0 ≈ 1.7 [7]

• Imaging system

• a probe laser with a tunable 
wavelength range from 
1160 nm to 15 μm

• will be synchronized with  
JETi 200 and POLARIS in the 
future, with a relative timing 
jitter of < 20 fs (RMS)
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• Motivation:

• Preliminary results of SWIR shadowgraphy: 

2.19 μm
Resolution test w/ 
𝜆𝑝𝑟 = 1800 nm

2.6 − 15 μm

795 − 805 nm,
7 mJ @ 1kHz,

< 35fs

Signal: 1160 − 1600 nm,
Idler: 1600 − 2600 nm

Astrella

❖ Shadowgram is formed 
mostly in the center part. 

❖ High gradients & short pulse 
duration        high contrast

SWIR probing

𝜆𝑝𝑟 = 750 nm 𝑣. 𝑠. 𝜆𝑝𝑟 = 1400 nm
(image courtesy by E. Siminos)

Outlook: mid-IR probing

• LWFA energy gain [8]:
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→ lower plasma density, higher energy gain

• Sensitivity of shadowgraphy [9]:  
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→ lower plasma density + fixed 𝜆𝑝𝑟𝑜𝑏𝑒 → lower sensitivity

• Previous results @ JETi 40 [3]

• A way towards few-cycle mid-IR pulse: 
self-compression in bulk material [11]

3100 nm, 20 μJ

via filamentation of mid-
IR pulses in the 
anomalous dispersion 
regime

• Spatial and temporal resolution [10]:

• Illustration of LWFA in 
the bubble regime [2]: 

𝜏𝑝 = 29 fs FWHM ,

𝑤0 = 10 μm,

𝑎0 = 4,

𝑛𝑒 = 0.005𝑛𝑐 (He plasma)

~ 8.75× 1018 cm−3 @ 800 nm

Achromatic tube 
lens (𝑓 = 250 mm)

ND filter

10X Mitutoyo 
NIR (NA=0.26)

10 nm Narrow 
bandpass filter

Resolution: 0.44 μm/pixel

• Ongoing project @ JETi 200

800 nm, 35 fs,
9 mJ @ 1kHz

Signal: 𝜆𝑐𝑒𝑛𝑡𝑒𝑟 = 1850 nm,
𝜏𝐹𝑊𝐻𝑀 = 56.7 ± 0.5 𝑓𝑠

Idler: 1400 nm

Ar filled HCF 𝑓 = 200 mm

InSb Focal plane array, 
pixel size: 15 μm, 
magnification: 20 ×, 
resolution: 0.75 μm/pixel

20 × Mitutoyo NIR

• plasma wavelength: 𝜆𝑝 ↑=
2𝜋𝑐

𝜔𝑝
= 2𝜋𝑐

𝜀0𝑚𝑒

𝑒2𝑛𝑒↓

• Spatial resolution: lower plasma density →
larger acceleration structure

• single-cycle limit of a few-cycle mid-IR pulse:  
τ = 10 fs @ 𝜆𝑝𝑟 = 3 μm

• Temporal resolution: for a low-density 

plasma, 𝜏𝑝𝑟 ≤
𝜆𝑝

2𝑐
is still valid

• Motivation:  avoid chromatic aberration, 
suppress plasma emission, … 

• Motivation:

• SWIR probing of laser-plasma has been proved in principle

• Previous pump-probe study: probe spectrum is closely related to the 
pump spectrum (centered ~ 800 nm ) [3,7]

• An independent probe laser w/ a tunability of wavelength is desired

• What’s next?

• The previous study of LWFA 
shadowgraphy at various delays: 
assume shot-to-shot fluctuation 
is negligible [7]

• In reality: acceleration structures 
are transient and prone to shot-
to-shot variation. Single shot 
probes are desirable [10]

• Next step: single shot muti-
frame shadowgraphy by a 
linearly chirped probe pulse and 
spectral filtering

• For a lower plasma density: 
larger 𝜆𝑝𝑟𝑜𝑏𝑒 → more sensitivity

After compression: 
𝜏𝐹𝑊𝐻𝑀 = 11.8 ± 1.2 𝑓𝑠

0.4 mJ, 𝑎0 ≈ 0.5

• JETi ONE

Post-Interaction filtering: 
ND 1.0 + 800/10 (raw data)

Post-Interaction filtering: 
ND 2.0 (raw data)

• 𝐸𝑝𝑟𝑜𝑏𝑒 ↑

SNR ↑
(compare to [3])

• Temp. Res.: 
preserved


