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Few-cycle probe setup with online beam diagnostics

▪ The probe pulses are picked from the main beam to ensure 
synchronization

▪ Beam diagnostics are an essential part of the setup, recording the input 
and output parameters

▪ In the gas filled hollow core fiber (HCF) the pulses are broadened by self-
phase modulation

▪ For best temporal resolution, pulses are broadened from initially 50nm 
FWHM to a bandwidth between 600nm to 1000nm and compressed by 
chirped mirrors

▪ Plasma waves driven by a Laser and an 
electron beam are evaluated

▪ The peaks in the retrieved spectrum 
indicate the oscillation period of the 
plasma waves

▪ Plasma electron density can be calculated 
via: ▪ The “head” of the laser pulse driving the plasma wake on the right is 

followed by sphere like modulations, which after a few periods are starting 
to elongate (approaching the lower density front of the target)

▪ A clear peak in the amplitude shows the wavelength of the plasma 
oscillations at around 27 µm, which converts to a density of 1.3 x 1018 cm-3

▪ Driven by the electron bunch, the first oscillation period is a 
clear sphere shaped feature, followed by similar 
modulations

▪ The FFT analysis on the right side shows a plasma 
wavelength of about 28 µm and a density of 1.2 x 1018 cm-3

Continuous wavelet transform (CWT) analysis

▪ The CWT is extracting the change of the plasma 
wavelength along the propagation and 
acceleration axis

▪ A lineout along the longitudinal axis shows the 
intensity modulation of the shadowgram

▪ For each longitudinal position, the peak 
amplitudes in the CWT indicate the local 
plasma wavelength; The blue line connects the 
peaks

▪ The local wavelength of the first few oscillations between the 
head of the laser and the shock is around 27 µm (1.3 x 1018 cm-3)

▪ Before the shock, at the front of the target, the density 
decreases and the modulations elongate

▪ The CWT analysis shows a slightly longer width of the 
first period (32 µm) compared to a constant 
wavelength (27 µm) in the following oscillations

▪ Far behind the driving electron bunch, the modulations 
elongate

▪ Electrons are accelerated in a plasma wakefield using a 
two-stage setup

▪ The first stage is driven by a ultra-intense laser pulse and 
generates a high charge electron bunch

▪ In the second stage this bunch drives its own wakefield and 
transforms the electrons quality and stability

▪ Few-cycle probe pulses give an insight in the plasma 
dynamics during acceleration

▪ Plasma density oscillations are captured for the laser and 
electron driven wakefields

▪ Shadowgrams with high temporal and spatial resolution 
are recorded and evaluated

▪ Recording of plasma oscillations with multi-plane and multi-colour imaging system
▪ Using RGB cameras + multiband spectral filters and stretch probe pulses

▪ Scan plasma wavelength over full length of LWFA, PWFA gas targets
▪ Reconstruction of a quasi-3D, quantitative plasma density distribution
▪ Systematically analysing and correlating the various diagnostics

Phase contrast shadowgrams in LWFA and PWFA

▪ Hybrid LWFA and PWFA experiment setup and probe imaging
▪ The high intensity Laser drives the wakefield in the 1st gas 

target
▪ Electrons bunches are accelerated up to GeV energies
▪ In the 2nd gas target the wakefield is driven by the electron 

bunch
▪ Both stages are probed by the few-cycle probe pulse
▪ The plane of interest can be imaged by different setups

▪ Overview
▪ Interferogram
▪ Microscope
▪ Multi-plane and multi-color
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Magnified

▪ Linear increase of plasma density 
with backing pressure

Multiplane imaging with 10x magnification
▪ High resolution multiplane 

images of LWFA
▪ Will be used for density 

reconstruction
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Plasma density as a function of longitudinal position and backing pressure

▪ Lower density at the front edge of 
the gas target

▪ Disturbances around the shock
→ Not so well defined plasma 

oscillations
▪ Constant density towards the 

plateau further inside the gas target

Next steps
▪ Apply to PWFA
▪ Record at multiple spectral 

ranges (time steps) for 
temporal evolution

→ Fast evaluation for quasi online diagnostic

→ Useful for more detailed plasma dynamics analysis along the acceleration axis 

→ Operative as a day-to-day probing and beam diagnostic

→ Versatile imaging with high spatial and temporal resolution

→ In situ plasma density measurements assist the optimization of acceleration experiments  
when correlated  to electron spectrometer

→ Recording of multi-plane and multi-color shadowgrams for 3D density reconstruction and 
temporal evolution

Introduction

Fast Fourier Transform (FFT) analysis 
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▪ Plasma wavelength along the first mm 
of the gas target
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Shadowgram + FFT of the LWFA stage in the 1st gas target Shadowgram + FFT of the PWFA stage in the 2nd gas target
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