Few-cycle probing of laser and electron driven
LUDWIG- plasma wakefield accelerator experiments
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Introduction Probe beam I Gas targets Phase contrast shadowgrams in LWFA and PWFA
= Electrons are accelerated in a plasma wakefield using a ‘@“““““E'Iectmn = Hybrid LWFA and PWFA experiment setup and probe imaging
two-stage setup Driving I beam = The high intensity Laser drives the wakefield in the 1% gas
» The first stage is driven by a ultra-intense laser pulse and Laser Microscope target
. et .
generates a high charge electron bunch 1 SelEedtE = Electrons bunches are accelerated up to GeV energies
= |n the second stage this bunch drives its own wakefield and I = |n the 2" gas target the wakefield is driven by the electron
transforms the electrons quality and stability il . bunch
= Few-cycle probe pulses give an insight in the plasma Vacuum window = Both stages are probed by the few-cycle probe pulse
dynamics during acceleration Spectral Lens = The plane of interest can be imaged by different setups
= Plasma den.5|ty osullajuons are captured for the laser and filter Magnified \ Nomarski prism = Overview
electron driven wakefields = Interferogram
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= Shadowgrams with high temporal and spatial resolution o -~ = = Microscope
are recorded and evaluated S ";% 3 // Beamsplitter = Multi-plane and multi-color
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o CONTTer snaroTereT — Versatile imaging with high spatial and temporal resolution
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Vacuum window Few-cycle probe setup with online beam diagnostics
== Beam splitter -
w R ble wed : :
GTmova - eres " The probe pulses are picked from the main beam to ensure
ass wedge pair . ) )
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e e S 3 - ' = Beam diagnostics are an essential part of the setup, recording the input
F N and output parameters
- \/ giiﬂw " |n the gas filled hollow core fiber (HCF) the pulses are broadened by self-
5 E B3 ,,fj:}e phase modulation
e R ] = For best temporal resolution, pulses are broadened from initially 50nm
RIPILY (PN A TR orus FWHM to a bandwidth between 600nm to 1000nm and compressed by
AN [S O chirped mirrors
: “as filled tube Delay
- — Operative as a day-to-day probing and beam diagnostic
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Fast Fourier Transform (FFT) analysis Shadowgram + FFT of the LWFA stage in the 1% gas target Shadowgram + FFT of the PWFA stage in the 2"d gas target
= Plasma waves driven by a Laser and an £ £ 0T
electron beam are evaluated £ gg%
* The peaks in the retrieved spectrum % ggg
. . . . . K3 : 2 L Ah g ; © 5
indicate the oscillation period of the “ N A .
plasma waves length in um Wavelength in um length in um Wavelength in um
= Plasma electron density can be calculated
via: * The “head” of the laser pulse driving the plasma wake on the right is = Driven by the electron bunch, the first oscillation period is a
, followed by sphere like modulations, which after a few periods are starting clear sphere shaped feature, followed by similar
A, = 2mC /2%7;':‘9 N ne,0[1018cm‘3] _ ()‘L 3[3.;%’1]) to elongate (approaching the lower density front of the target) modulations
0 plH " Aclear peakin the amplitude shows the wavelength of the plasma = The FFT analysis on the right side shows a plasma
oscillations at around 27 um, which converts to a density of 1.3 x 1018 cm?3 wavelength of about 28 um and a density of 1.2 x 1018 cm™3
—> Fast evaluation for quasi online diagnostic
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Continuous wavelet transform (CWT) analysis _ g _ g _
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= The CWT is extracting the change of the plasma g 8 “RE i N g
wavelength along the propagation and < ] jsg < S °- g
acceleration axis = £ . = = L5
= Alineout along the longitudinal axis shows the 3 a0 053 = 5 ;zg
intensity modulation of the shadowgram =201 o s o s S g =
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= For each longitudinal position, the peak Length in um Length in um
amplitudes in the CWT indicate the local * The local wavelength of the first few oscillations between the = The CWT analysis shows a slightly longer width of the
plasma wavelength; The blue line connects the head of the laser and the shock is around 27 pm (1.3 x 1018 cm3) first period (32 um) compared to a constant
peaks = Before the shock, at the front of the target, the density wavelength (27 um) in the following oscillations
decreases and the modulations elongate = Far behind the driving electron bunch, the modulations
— Useful for more detailed plasma dynamics analysis along the acceleration axis elongate
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Multiplane imaging with 10x magnification Plasma density as a function of longitudinal position and backing pressure
0 = High resolution multiplane le1s 60
100 images of LWFA _ 4 £ 50 - -, =
m . . [ L- ]
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% . Next steps ; :‘;: - 06 = Plasma wavelength along the first mm
5 = Apply to PWFA 504 - | | | | | | of the gas target
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temporal evolution " Lower density at the front edge of £ 201 - ¢ Las
length in um the gas target 5 - ) - P
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= Disturbances around the shock § 55 H - =
— Recording of multi-plane and multi-color shadowgrams for 3D density reconstruction and - Not so well defined plasma o . j 15 g
temporal evolution oscillations @ zg 1 - - 1.0
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Outlook lateau further inside the gas target © 7 packingpressueinbar
| o | | | | | plateau further inside the gas targe Backing pressure in bar
= Recording of plasma oscillations with multi-plane and multi-colour imaging system _ _ .
= Using RGB cameras + multiband spectral filters and stretch probe pulses - Llr\ear increase of plasma density
= Scan plasma wavelength over full length of LWFA, PWFA gas targets with backing pressure
= Reconstruction of a quasi-3D, quantitative plasma density distribution — In situ plasma density measurements assist the optimization of acceleration experiments
= Systematically analysing and correlating the various diagnostics N when correlated to electron spectrometer |
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