Hot Electron Jets emission in Relativistic Laser Interaction with Wavelength-Scale Rods

M. Elkind¹, D. Balckman², I. Cohen¹, T. Catabi¹, A. Levanon¹, A. Arefiev², and I. Pomerantz¹

¹ The School of Physics and Astronomy, Tel Aviv University, Israel

² Department of Mechanical and Aerospace Engineering, University of California San Diego, USA

ACKNOWLEDGEMENT - This poster presentation has received support from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement No 101004730.

Motivation

Many intense laser irradiation experiments have shown that wavelength-scale geometrical features on the target lead to increased laser energy transfer to hot electrons.

Nano structures [1]

Micro structures [2]

[1] Z. Samsonova. *et al. Phys. Rev. X* 9, 021029 (2019)
[2] D. Khaghani. *et al. Sci. Rep.* 7, 11366 (2017)

Spherical structures [3] Complex structures

] Complex structures [4]

[3] H. Sumeruk. A. *et al. Phys. Rev. Lett.* 98, 045001 (2007)
[4] A. Zigler. *et al. Phys. Rev. Lett.* 110, 215004 (2013)

Experimental Observation

- A dramatic difference between P and S polarizations for electrons at 0° in relation to the laser propagation axis
- For P polarization, electrons are emitted in two lobes with a few degree separation between them

Our Goal

Explaining this observation by a parametric investigation of a single free standing rod irradiated by relativistic laser pulse.

The Experimental Setup

The NePTUN laser system is a 0.5 J, 25 fs laser, based on a picosecond optical parametric chirped pulse amplification frontend, presenting ps contrast 10^{-11} @ t = -60ps

The Underlaying Dynamics Revealed by PIC

2D/3D PIC simulation with the EPOCH code

[C. S. Brady and T. A. Arber, Plasma Phys. Controlled Fusion 53, 015001 (2011).]

A probe is injected colinearly with the laser to confirm rod survival on-shot.

The main diagnostic is an angularly resolved electron spectrometer.

Step 1: The longitudinal field E_x pulls electrons from the front surface.

Step 2: The transverse field E_y pules them to the sideways.

Step 3: The magnetic field B_z rotates them around the corner.

We also observed modifications to the electron spectrum by the laser field in vacuum, currently under study by Dr. David Blackman/UCSD.

Comparing different widths of rods from smaller-to larger-than the focal spot ($3.5\mu m$ in our experiment).

