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AWAKE AND ITS PLASMA RAMP
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We present a numerical study performed with the particle-in-cell code LCODE [4] using parameters similar to
those of the experiments in 2D axisymmetric geometry. In simulations, the plasma ramp has a detrimental
effect on both a seed electron bunch placed inside of the proton bunch and on an electron bunch injected in a
second plasma for acceleration [5], if that plasma had a density.
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AWAKE: long gaussian p+ bunch entering ramp
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ELECTRON BUNCH FOR ACCELERATION INSIDE MICROBUNCH TRAIN
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Fig. 10 Plasma electron filament, transverse fields, and p+ bunch density.

*final parameters subject to change.
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bunches in wakefields driven by a proton bunch.
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PLASMA RAMP SCHEMATIC (NOT TO SCALE)

I
seed e- bunch plasma density ramp

plasma entrance

plasma electrons
filament on axis

direction

transverse fields from filament I

push e- bunch away from axis

run2a

possible ramp in second plasma

N ~doeee [

plasma e-
1 =
g =
Zo -
"
-] B | |
/g 0 bemes s smmn - = = =2 S iy =
\% _20 - — 83’:‘1 ; > BT AT s py ,-\“'.‘_11;;:;:;:;_\:;: ;‘:—;-\7\_:;?};»Lﬁ;;?&: }';;:.:;;:;I;v{\.;’..;_" _::__' ‘\:)_Vf‘,' \'f‘i /“ ’A}’»"I:,‘I
o | 1 — (): m::: —_ 1
E _40 | ——2z=08m ‘ ‘ ‘ | ‘ iZ — m
1200 1000 800 600 400 200 0

Fig. 5 Long p+ bunch at the entrance of the plasma and plasma electron filament, zoom below.
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Fig. 13 e- bunch normalized emittance. or ro/o

* (accel.) 150 MeV e- moved from axis to k,* = 0.37 mm in
160 cm (20 kV/m fields)

« microbunch train has less charge than full bunch - less dense
filament > lower amplitude of the fields

« most of the e- charge outside plasma

higher initial emittance - lower charge on target for
applications
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