Direct laser acceleration of positrons with intense lasers

B. Martinez¹

B. Barbosa¹, M.Vranic¹

¹ GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || **golp**.tecnico.ulisboa.pt

Acknowledgments

Supercomputing Centre (Spain)

PLA/3800/2021.

European Research Council (ERC-2015-AdG Grant No. 695088)

Fruitful discussions with Prof L. O. Silva, Ó. Amaro, R. Babjak, D. Maslárová

Simulation results obtained at the MareNostrum supercomputer, based in the Barcelona

Portuguese Science Foundation (FCT) Grant No. CEECIND/01906/2018 and PTDC/FIS-

Positron acceleration: an experimental and numerical challenge

Post-acceleration of positrons in plasma wakefield¹⁻⁷ Plasma density (8.0 x 10¹⁶ cm⁻³ Plasma e^+ beam from linear accelerator ty (10¹⁶ (2 km at SLAC) -100 -150 -50 -200 ξ (μm) Image credit to S. Corde et al., Nat. **524**, 442-445 (2015) High charge and quality beam, experimental availability But, no in-situ creation of positrons

¹M.J. Hogan et al., PRL **90**, 205002 (2003) ²B.E. Blue et al., PRL **90**, 214801 (2003) ³S. Corde et al., Nat. **524**, 442-445 (2015) ⁴N. Jain et al., PRL **115**, 195001 (2015)

Positron creation with multi-PW lasers⁸⁻¹⁰

⁵S. Gessner et al., NC **7**, 11785 (2016) ⁶A. Doche et al., SR **7**, 14180 (2017) ⁷C. Lindstrom et al., PRL **120**, 124802 (2018)

⁸M.Vranic et al., SR **8**, 4702 (2018) ⁹Z. Xu et al., CP **3**, 191 (2020) ¹⁰Y. He et al., CP **4**, 139 (2021)

Outline

Paper available arXiv:2207.08728

One-to-one full-scale numerical simulations

- Positron guiding via a self-loaded dense electron beam
- Direct laser acceleration of positron

Modelling geometry: quasi-3D

3D modelling of the laser guiding is necessary, but out of reach for super computers

^IA. Lifschitz et al., JCP **228**(5), 1803-1814 (2009) ²A. Davidson et al., JCP **281**, 1063-1077 (2015)

Quasi-3D: Fourier decomposition in azimuthal modes^{1,2}

Fields are decomposed
$$\mathbf{F} = \mathscr{R} \left\{ \sum_{m \ge 0} \mathbf{F}(r, z) e^{im\phi} \right\}$$

The grid is in cylindrical coordinates (z, r, ϕ)

Axisymmetric self-generated channel fields, mode m = 0

Non-axisymmetric linearly polarised laser field, mode m = 1

Quasi-3D is more than 2D cylindrical It has the correct 3D laser field evolution!

Requirements in terms of numerical implementations

We need to account for QED processes taking place at the focal plane¹

^IR. A. Fonseca et al., in ICCS, LNCS **2331** 342 –351 (2002) ²A. Davidson et al., JCP **281**, 1063-1077 (2015) ³B. Martinez et al., arXiv 2207.08728 (2022)

Overview on the Particle-in-cell method¹

¹C.K. Birdsall, and A. B. Langdon, *Plasma Physics via Computer Simulation* (1991)

High-energy radiation and electron-positron pair creation in a PIC code^{1,2}

¹A. Zhidkov et al., PRL **88**, 18 (2002) ²C.P. Ridgers et al., PRL **108**, 165006 (2012)

USITIS 4.0

OSIRIS framework

- Massively Parallel, Fully Relativistic Particle-in-Cell Code
- Parallel scalability to 2 M cores
- Explicit SSE / AVX / QPX / Xeon Phi / CUDA support
- Extended physics/simulation models

Open-access model

- 40+ research groups worldwide are using OSIRIS
- 300+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available

Using OSIRIS 4.0

- The code can be used freely by research institutions after signing an MoU
- Find out more at:
- epp.tecnico.ulisboa.pt/osiris

Ricardo Fonseca: ricardo.fonseca@tecnico.ulisboa.pt

Osiris Quasi-3D: implementation of γ -ray and e^{\pm} pair creation

Simulation of single-stage positron acceleration

Consistent simulation of positron creation and acceleration

Laser pulse¹⁻³ (red/blue)

80 PW and 12 kJ

150 fs duration, peak amplitude 5×10^{23} W/cm²

Photon beam⁴⁻⁵

Synchrotron energy profile Transverse periodic boundary condition

Submillimeter dense plasma channel⁶ (gray)

Transverse density profile is parabolic

Plasma gradient at the boundary

¹J. Bromage et al., HPLSE **7**, e4 (2019) ²G. Mourou et al., ELI Whitebook (2011)

B. Martinez et al., arXiv 2207.08728 (2022)

³B. Shao et al., OL **45**, 2215 (2020) ⁴A.J. Gonçalves et al., PRL **122**, 084801 (2019) ⁵H.T. Kim et al, SR **7**, 10203 (2017) ⁶F. Sylla et al., RSI **83**, 033507 (2012)

Positron are guided by a dense and self-loaded electron beam

^IL. L. Ji et al., PRL **II2**, 145003 (2014) ²M.Vranic et al., PPCF **60**, 034002 (2018) ³T. Wang et al., PPCF **61**, 084004 (2019) ⁴E.G. Gelfer et al., NJP **23**, 095002 (2021)

Charge content and the energy spectrum of the positron beam¹

About the focusing structure

^IB. Martinez et al., arXiv 2207.08728 (2022)

- It starts after ~200 µm
- It is sustained for $\sim 200 \ \mu m$

- Total charge 17 fC
- Energy gain $0.22 \rightarrow 1.3 \,\text{GeV}$ (6-fold increase)
- Inset: $N_{\text{max}} = 6 \text{ pC/GeV}$ and 12 fC/GeV

Positrons gain energy through direct laser acceleration¹

^IB. Martinez et al., arXiv 2207.08728 (2022)

A recall of the coordinate system

 $x(\perp)$: polarisation ► z(||): propagation

Work from channel field $\rightarrow m = 0$ Work from laser field $\rightarrow m = 1$

Dashed line = limit where energy gain equals the final energy

Main energy gain from the laser field in its polarisation direction

 \rightarrow signature of direct laser acceleration

Longitudinal energy gain from channel and laser fields

 \rightarrow the dephasing length of positrons is longer

Outline of our work¹

• Positron creation and acceleration in a single stage

^IB. Martinez et al., arXiv 2207.08728 (2022) ²O.N. Rosmej et al., MRE **6**, 048401 (2021)

Perspective I: inject more positrons

• Use a higher charge electron beam^{2,3} $10 \, \text{pC} \rightarrow 100 \, \text{nC}$

Perspective 2: decrease the laser power

• Combine the scheme with the Bethe-Heitler pair creation

³A.E. Hussein et al., NJP **23**, 023031 (2021)

Discussion

What future developments are needed ?

- Take advantage of new parallelisation methods (GPU, vectorisation)
- Particle pushers to handle high-amplitude fields
- Implement and handle more radiative/QED processes and particles

Do the planned activities address the requirements from funded projects

- It belongs to the 2020 Roadmap on plasma accelerators¹
- It is not part of AWAKE, nor EuPRAXIA

Does simulation/theory require its own roadmap?

- Yes, multi-scale physics requires more developments
- It requires a roadmap, and also dedicated programs/fundings

¹F. Albert et al., New J. Phys. **23**, 031101 NJP (2021)

Slides for questions

With multi-PW lasers, we can create, inject and accelerate positrons

Laser-electron beam scattering¹

Weakness: 2D and/or staged simulations \rightarrow No quantitative estimates ! **Strength**: Compactness, all-optical positron creation and acceleration

Two lasers in a dense and short channel²

Acceleration in Coherent Transition Radiation fields³

Positron creation can be quantified precisely

¹T.G. Blackburn et al., PRA **96**, 022128 (2017) ²O. Amaro and M. Vranic, NJP **23** [1500] (2021)

What is the optimal electron beam energy for injecting most positrons?

There is a trade-off between having more positrons overall and the injection efficiency

What we know about direct laser acceleration of electrons^{1,2}

Electrons interacting with a laser inside a channel

¹A. Pukhov et al., PoP **6**, 2847 (1999) ²M.Vranic et al., PPCF **60**, 034002 (2018)

Direct laser acceleration of positrons is possible only if we can invert the background field direction

Modelling in a simplified framework

Assumption: we have a self-loaded electron beam at the channel center

Self-loaded electron beam at the channel center (gray)

 \rightarrow The radial channel field $E_y = \kappa_E y > 0 \rightarrow E = \kappa_E y < 0$

Charge content and the energy spectrum of the positron beam

About the guiding structure

- It starts after ~200 µm
- It is sustained for $\sim 200 \ \mu m$

After ~ 400 μ m of propagation

Total charge 17 fC The spectrum is peaked $\sim 1.3 \, \text{GeV}$ since low energy positrons are expelled away

Energy conversion efficiencies laser pulse $\rightarrow e^+$ beam: 10^{-9} Emittance $\epsilon_{\rm rms} = 0.5 \, \rm mm \, . \, mrad$ normalised emittance $\epsilon_{n,rms} = 1000 \text{ mm} \cdot \text{mrad}$ Divergence $\pm 100 \, \text{mrad}$

Number of positrons deflected toward the channel axis¹

^IB. Martinez et al., arXiv 2207.08728 (2022)

Initial distribution of gamma-rays

^IT. Erber, RMP **38**, 4 (1966)

Spatial distribution of gamma-rays for simulations²

Due to Quasi-3d, we have to

- \rightarrow initialise photons instead of electrons
- \rightarrow use a uniform distribution

Number density 10^{17} /cm³ direction z: Gaussian with FWHM of $3 \mu m$ direction r: uniform

²B. Martinez et al., arXiv 2207.08728 (2022)

Fields in the plasma channel

A recall of the coordinate system

 $x(\perp)$: polarisation \rightarrow z(||) : propagation

Slides for implementation

Exact pusher in quantum regime

In the classical case, we do not modify the pre-existing routine In the quantum regime, we combine the exact push with the quantum RR damp

Bertrand Martinez | Weekly progress | February, 2021

Exact pusher in "qed" algorithm

Agreement between Boris and exact quantum pushers

Bertrand Martinez | Weekly progress | February, 2021

Exact pusher in "qed-cyl" algorithm

Agreement between Boris and exact quantum pushers

Bertrand Martinez | Weekly progress | February, 2021

Setup I : e^- rotating in a uniform B field

 e^- rotating in a uniform B field

Validation

Spectra of the energy radiated by electrons

Agreement between 3D, quasi-3D and theory Validation was done for the range $\eta \in (0.01, 1)$

Bertrand Martinez | APS DPP | November, 2020

Setup 2 : Laser beam interaction

Electron beam

 $9 \times 3 \times 3$ micron FWHM size in x, y and z 4 GeV and mono energetic Density $\simeq 2 \times 10^{18} \,\mathrm{cm}^{-3}$

Simulation setup in quasi 3D and in 3D

211 hours = 4.4 hours \times 48 processors 52 points per laser wavelength 250 points per laser period

Laser pulse

0.8 micron wavelength Linearly polarised, $a_0 = 50$ 30 fs FHWM duration 2.5 micron transverse FWHM at focus

Setup 3 : A more complex scenario

Bertrand Martinez | APS DPP | November, 2020

Choice of solver and pusher

Motivations for testing solvers/pushers

Why should we test the field solver of Fei ?

Laser propagation in an under-dense plasma Precision on the transverse Lorentz force is required

Why should we test the the exact pusher from Fei?

Pair propagation and deflection in strong fields

No significant difference on global energy balance Identical maximum energy for pairs

Simulation results with various solver/pusher combinations

 e^- energy spectra at $x = 1300 \lambda_0$

Evolution of maximum e^- energy

Evolution of the kinetic energy $(e^{-} \text{ and } H^{+})$

Evolution of the laser energy

