


Machine Learning for control/tuning of plasma-based accelerators

Set the right control parameters . g in order to maximize one
emtosecon (or several) objectives:
laser pulse

* @as pressure -

* Laser energy \/\\\‘ - * Electron emittance

* Laser focal position \ * Electron energy

« Laser spectral properties g * Electron energy spread

° Laser Waist ¢ E|eCtr0n Charge

.« e Combinations thereof

In high-dimensional parameter space:

Laser energy
Gas density
Laser chirp

Find Xpeg such that f (Xpese) is maximal.
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Two different tuning problems: optimization and stabilization

Femtosecond
laser pulse

Optimization: J\\\, | Stabilization:
The (uncontrolled) properties of the \ — The (uncontrolled) properties of the
system do not change (e.g. negligible drift). system change in time (e.g. thermal drifts)
e.g. The previously-found optimal point xpeg;
e Design study (simulations) becomes obsolete after some time.
* Experimental setup,

over relatively short timescales Aim: Find the correction Ax that recovers

the optimal behavior.
Aim: “exhaustively” search the parameter
space to find xpest-
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* Machine Learning for optimization of plasma-based accelerators

* Machine Learning for stabilization of plasma-based accelerators

e Conclusion
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High-dimensional optimization Is expensive

Aim:
Find x,.; such that f(x,.,) is maximal, Femtosecond
with few evaluations of f laser pulse
Motivation: evaluations of f are usually costly \/\\\‘ -

* Design studies:
Evaluations of f require computationally
expensive numerical simulations

o . Laser energy
®* Tuning in experiments: :
) . : Gas density
Evaluations of f take time on the experiments xr = .
Laser chirp

Parameters of the machine may drift if it
takes too long to find the minimum.
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Overview of different optimization algorithms

“Conventional” optimization algorithms:

e.g.
* Gradient descent

Genetic algorithms

Nelder-Mead algorithm (a.k.a. simplex)

The next evaluations are based on simple rules
that the depend on the last few evaluations.

Typically require many evaluations of .

~

Optimization algorithms based on machine learning:
Progressively learn a global model of the objective

function f(x) over the parameter space.
Use this model to only evaluate the most promising x.

Model of f

Input x,

Input x;

e.g. Bayesian optimization

Typically require fewer evaluations of f.
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Applications of Bayesian optimization in laser-plasma acceleration

I X-Ray Signal
500 1000 1500

Laser In

L
o
1

Plasma Source
/ Laser, Electron

o
0
1

& X-Ray Beams
Off-Axis
Paraboloid

<
o
1

o
»
1

X-Ray Counts (norm.)

o o

o N
llll

’#

Plasma Mirror

Permanent Dipole Magnet

Lanex Screen

X-Ray Camera

Scaled
parameter
o

Electron Spectrum (a) a) Burst number b) 6, (mrad)

6 control parameters tuned simultaneously, to maximize the betatron X-ray yield.

R. Shalloo et al., Nature Communications (2020)
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Applications of Bayesian optimization in laser-plasma acceleration
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Tuning: ® of
* background density 8 pe .- PR P
o fe) . o 0 0 %’ ",‘.’ . E
* amount of N2 injected © R I R SRR
* |aser focal position i
in order to maximize beam quality in ionization injection f = \/é_
AFE S. Jalas et al., PRL (2021)
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Some areas of current research

F. Irshad et al., arXiv:2112.13901 (2021)

* Multi-fidelity Bayesian optimization A. Ferran-Pousa et al., IPAC 2022
Using low-fidelity simulations to rapidly scan the parameter space F. Irshad et al., arXiv:2011.01542 (2022)

and high-fidelity simulations when focusing on the optimal point

1 safety constraints
1 objective y

* How to satisfy safety constraints
esp. for quantities that are difficult to predict ]
and require simulation / experiments (e.g. beam loss)

Kirschner et aI.,_larxiv: 1902.03229 (22019)

) 50

151
15

1.0 1 /
« Proximal optimization A v R. Roussel et al
For experiments: how to avoid repeated, sl / " arxiv:2010 0982’4 (2021)

large jumps in input parameters
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https://arxiv.org/abs/2112.13901
https://arxiv.org/abs/2011.01542

* Machine Learning for optimization of plasma-based accelerators

* Machine Learning for stabilization of plasma-based accelerators

e Conclusion
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Overview of different stabilization algorithms

“Conventional” stabilization algorithms: Stabilization algorithm based on machine learning:
e.g. Can recognize “patterns” in the system and
« PID directly apply the right correction.

Stochastic gradient descent
Extremum seeking

° ... Measured
pattern

Correction
Ax

. . Neural network
Often require relatively slow feedback loops.

(other solutions: reinforcement learning, ...)
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Example: coherent laser combining

Spatial combiner
spectral splitter spatial splitters |

A
g —— fiberamplifiers(-300)
| N

: spatial combiners (~100x)
\

TR
1e .
Al I
{
/ SN . temporal combiner
N\
\

(~100x)

pulse compressor

(1ns -100fs)

| /7 The phases of the incident laser beams need to be such that
e they interfere destructively in all but the forward direction.

But the phase of each beam is drifting and is not measured
directly (only the resulting intensity pattern is).

~
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Solution for stabilization: pattern recognition with neural network

Digital control

&

Phase modulator

current
intensity
pattern

5x5
desired
intensity
pattern

~

AY
frrreee l"|

Array-
forming
optics

DOE1

Collimator

==

o
>"\] Irl?" |

DOE2

Detector

Sampler

ressor

Comp-

FROG

Camera

Change in
phase to

apply to each
of the 9(-1)

beams

-
ACCELERATOR TECHNOLOGY&A TA PD

APPLIED PHYSICS DIVISION

8 Corrections [cnt]

pattern beam power [k cnt]

o
1

Training set:

Apply known changes in phases
and record the intensity pattern
before and after the change.
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D. Wang et al., Optics Express, 30(8) 12639, 2022
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Another example: stabilizing beam size at the Advanced Light Source

-1 NN-based FF off

T gt I
9 12, 111110 el PO
Oy 0.93 pm rms (1.8%)

O R A ID phase switching|_ ' ‘ | T

-/ NN-based FF on / FF action
| ' \ |

.........

Parameters _ Ox 0.20 um rms (0.4%)
of insertion Beam size
devices (ID) - ' ' - : : : ~ : - : e

S. C. Leemann et al., Phys. Rev. Let,194801 (2019)
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Conclusion

Recent work showed that ML methods can be applied in practical cases, of interest for LPA

* Optimization of a static setup
(Bayesian optimization, genetic algorithms + neural network, ...)

e Stabilization against drifts
(Pattern recognition with neural networks, reinforcement learning, ...)

~
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Conclusion

1) Future developments needed and planned as seen from the speakers and their groups
* More applications of ML for stabilization of in experiments
* Better evaluation of uncertainty from ML methods

* Combine simulations of different fidelities for design optimization

2) Do the planned activities address the requirements from funded projects (AWAKE, EuPRAXIA,
...) and from various roadmaps for plasma accelerators? Are there urgent holes?

There is sometimes a gap between proof-of-concept machine learning application
and robust solution that can run autonomously at the right rep. rate.
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