A plasma-based acceleration method suitable for non-relativistic muons

Chiara Badiali, Bernardo Malaca, Thales Silva, Ricardo Fonseca, Jorge Vieira

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || **golp**.tecnico.ulisboa.pt

EUROPEAN NETWORK FOR NOVEL ACCELERATORS

NPACT supported by EU via I-FAST

What are the best particles to collide?

Why muons?

 p^+

What are the best particles to collide?

Why muons?

What are the best particles to collide?

 p^+

Usually the energy available is less than 10% of this value

 p^+

Why muons?

Furthermore, $m_{\mu} = 200 \ m_e$ so that:

Muons have a finite life-time $(2.2 \ \mu s) \rightarrow$ We have to accelerate them quickly to mitigate muon decay losses, exploiting the time-life dilation in the lab reference frame given by the Lorentz boost ($\tau' = \gamma \tau$) → possible advantage in using plasma based accelerators.

Muons, like electrons, are **fundamental particles**, for this reason their full energy is available in collisions

 \rightarrow a **I4 TeV** muon collider with sufficient enough luminosity would provide similar discovery reach as a **I00 TeV** proton-proton collider.

$$\frac{e^{-}/\mu^{-}}{\Delta E_{e}} = \left(\frac{m_{e}}{m_{\mu}}\right)^{4} \sim 10^{-12}$$

Muon production: proton beam against a dense target 6 GEANT4

μ^- production in the earth's atmosphere

* J.Allison et al., Nucl. Instrum. Meth.A 835 (2016) 186-225.

Muons production on Earth

Ν_u

High energetic proton beam against a dense target

A GEANT4* simulation with a proton beam of $5 \cdot 10^6$ monoenergetic protons ($E_p = 450 \text{ GeV}$) was performed (in reality ~ 10^{12} protons).

Subluminal spatio-temporal pulses as drivers

A first step toward the acceleration of non-relativistic particles is having slower drivers ($v_g < c$).

In free space, we can sculpt optical pulses with a modulation of the spatio-temporal degrees of freedom *.

This allows us to have pulses propagating with a group velocity $v_g \neq c$: dω $= c \tan \theta$

Subluminal spatio-temporal pulses as drivers

A first step toward the acceleration of non-relativistic particles is having slower drivers ($v_g < c$).

This allows us to have pulses propagating with a group velocity $v_g \neq c$: $d\omega$ $= c \tan \theta$

Subluminal spatio-temporal pulses as drivers

A first step toward the acceleration of non-relativistic particles is having slower drivers ($v_g < c$).

This allows us to have pulses propagating with a group velocity $v_g \neq c$: dω $- = c \tan \theta$

Toward accelerating drivers

If we assign a finite spatial spectrum instead of a singular frequency of the stationary case, we can make these pulses accelerate with an axially encoded changing velocity*.

*M. Yessenov and Y.F.Abouraddy, Phys. Rev. Lett. 125, 244901 (2020).

Osiris

Analytical model

We model the energy gain of non-relativistic particles using an external field with a time dependent phase velocity. Energy gain:

$$\frac{dp}{dt} = \frac{d}{dt} \left(\frac{\beta_z(t)}{\sqrt{1 - \beta_z^2(t)}} \right) = eE_0 cos[k_p(z(t) - \int \beta_\phi(t) dt)]$$

Imposing the phase-locking condition ($\beta_z(t) = \beta_\phi(t)$), we find:

Toward accelerating drivers

If we assign a finite spatial spectrum instead of a singular frequency of the stationary case, we can make these pulses accelerate with an axially encoded changing velocity*.

*M. Yessenov and Y.F.Abouraddy, Phys. Rev. Lett. 125, 244901 (2020).

Osiris

Analytical model

We model the energy gain of non-relativistic particles using an external field with a time dependent phase velocity. Energy gain:

$$\frac{dp}{dt} = \frac{d}{dt} \left(\frac{\beta_z(t)}{\sqrt{1 - \beta_z^2(t)}} \right) = eE_0 cos[k_p(z(t) - \int \beta_\phi(t) dt)]$$

Imposing the phase-locking condition ($\beta_z(t) = \beta_\phi(t)$), we find:

2D tests in OSIRIS of the use of these accelerating pulses as drivers

 $x_2 [c / \omega_p]$

2D simulations have been performed using OSIRIS, testing the acceleration in the quasi-linear regime, with $a_0 = 0.8$.

2D tests in OSIRIS of the use of these accelerating pulses as drivers J

Conclusions & Future Work

Plasma accelerators so far are only applicable to relativistic particles.

To fill this gap, we propose the possibility of accelerating non-relativistic particles using optical wave packets with a group velocity smaller than the speed of light.

Accelerating space time wave packets have been implemented into OSIRIS, and then tested as drivers for the acceleration of non-relativistic muons.

In the future, we will investigate the **non-linear** regime to see if we can improve the energy gain.

Thank you for your attention! :)

BACK UP SLIDES

A pulsed plane wave is split into two paths:

$$E(x, z; t) = e^{i(k_0 z - \omega_0 t)} \int z dk_x \tilde{\psi}(k_x) e^{i(k_x x + [k_z - k_0][z - ct \tan \theta])}$$

= $e^{i(k_0 z - \omega_0 t)} \psi(x, z - v_g t).$

the ST wave packet is synthesized using a twodimensional pulse shaper formed of a diffraction grating (G), cylindrical lens (L), and spatial light modulator (SLM)

Testing of the analytical model in 2D using OSIRIS

Moving window at **0.95c** Initial velocity of the muons of **0.9c**

Optical space-time wave packets with arbitrary group velocities

The group velocity of an optical pulse can usually be modified in the propagation in a material.

In free space, we can sculpt optical pulses with a modulation of the spatial and temporal degrees of freedom.

Spatio-temporal wave packets: each spatial frequency is uniquely associated with a specific temporal frequency (or wavelength)

Kondakci, H. Esat; Abouraddy, Ayman F., Nature Communications, 10, Article number: 929 (2019) https://doi.org/10.1038/s41467-019-08735-8

Optical space-time wave packets with arbitrary group velocities

OSIRIS 2D simulations of subluminal space-time wake packets*

*B. Malaca et al., in preparation

Plasma ramp for the "acceleration" of the plasma wake

Plasma ramp for the "acceleration" of the plasma wake

$$z_B = v_g t$$

 $z_A = v_g t - \lambda_p(n_p)$

S. Bulanov et al, Phys. Rev. E 58, R5257(R) – Published 1 November (1998), https://doi.org/10.1103/PhysRevE.58.R5257

$$v_B = v_g$$

$$v_{A} = \frac{dz_{A}}{dt} = v_{g} - \frac{d\lambda_{p}(n_{p})}{dt} = v_{g} - \frac{\partial\lambda_{p}}{\partial n_{p}}\frac{\partial n_{p}}{\partial t}$$

Plasma ramp for the "acceleration" of the plasma wake

$$z_B = v_g t$$

 $z_A = v_g t - \lambda_p(n_p)$

This accordion effect results in an acceleration of the back of the plasma wake \rightarrow it could help us to extend the acceleration distance.

S. Bulanov et al, Phys. Rev. E 58, R5257(R) – Published 1 November (1998), https://doi.org/10.1103/PhysRevE.58.R5257

$$v_B = v_g$$

$$v_{A} = \frac{dz_{A}}{dt} = v_{g} - \frac{d\lambda_{p}(n_{p})}{dt} = v_{g} - \frac{\partial\lambda_{p}}{\partial n_{p}}\frac{\partial n_{p}}{\partial t}$$

Acknowledgments

Simulation results obtained at MareNostrum (BSC).

Thank you for your attention

C Badiali | EPP Weekly Meeting | April 8th, 2022