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Motivation: Reaching high energy, compactly and efficiently
> High particle energy required by several high-impact applications: 

> Hard x-ray FEL:              10+ GeV 
> Higgs factory:                 100+ GeV 
> Energy-frontier collider:   1000+ GeV 

> Single-stage plasma accelerators with high energy gain: 
> Solution #1: Very-high energy driver (e.g., protons as in AWAKE) 

> Limits: Low rep. rate / energy efficiency, overall not compact 
> Solution #2: High transformer ratio (shaped driver) 

> Limits: Difficult to go beyond 5–10, very sensitive to current profile 

> Use of multiple stages (staging) is likely required for high energy + high efficiency + compactness.

Strawman design of a plasma-based collider with multiple stages. 
Image source: Pei et al., Proc. PAC’2009 (IEEE, Piscataway, NJ, 2009), p. 2682.
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Challenges of staging

> Proof-of-principle experiment at LBNL: 
> Demonstrated feasibility of staging. 
> Used a compact active plasma lens 
> Also highlighted many challenges 

(e.g., only ~3% of charge was coupled) 

> Staging is non-trivial for four reasons: 
> Reduced average gradient (compactness)  
> In- and out-coupling of drivers 
> Emittance growth from chromaticity 
> Tight synchronization tolerances
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Novel solutions for staging
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Novel solution: Nonlinear plasma lenses
> Collider final-focus systems already cancel strong chromaticity. 
> Local chromaticity correction in conventional beam optics: 

> Sextupoles close to quadrupoles (+ dispersion from dipoles) 
> Active plasma lenses provide stronger focusing (kT/m). 
> Applying local chromaticity correction to active plasma lenses: 

> The magnetic field is given by 
 
 
 
 
where g is the magnetic field gradient, and 1/Dx is the 
transverse gradient (Dx is the required dispersion). 

> The added field is the plasma-lens equivalent to a 
sextupole field. 

> Can in principle also use a passive (wakefield-based) plasma lens
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1 Plasma lenses solve staging problem #1:  
High average acceleration gradient
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An achromatic lattice for staging
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> Simplest lattice for achromatic and emittance-preserving staging: 
> Two dipoles (for dispersion) 
> Two nonlinear plasma lenses (for chromaticity correction) 
> One central sextupole (for second-order dispersion correction) 

> Nonlinear focusing causes emittance growth: 
> Use mirror symmetry to cancel nonlinear kicks
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In- and out-coupling of drivers
> Dipoles allow in- and out-coupling of both laser- and beam drivers. 
> A net angle is introduced (decreasing with energy):  “linac” ⇒ “bananac”  

> Laser driven:
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2 Dipoles solve staging problem #2:  
Laser/beam drivers can be in- and out-coupled
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Achromatic optics, explained

Small beam inside 
plasma accelerator

Plasma lenses

Sextupole
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Achromatic optics, explained

Small beam inside 
plasma accelerator

Plasma lenses

Sextupole
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Achromatic optics, explained

Diverged and 
dispersed

Dispersed  
in lens

Emittance growth 
from dispersion
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Achromatic optics, explained

Dispersion  
is collimated

Phase spaces 
are flipped
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Achromatic optics, explained
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is collimated

Phase spaces 
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Achromatic optics, explained

Second-order dispersion 
is cancelled

Beam size is small,  
but dispersed

Emittance growth 
from nonlinear 

focusing
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Achromatic optics, explained

Second-order dispersion 
flips direction

Negligible effect 
of sextupole 

(small beam size)
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Achromatic optics, explained

Beam size is large,  
phase is flipped

Same dispersion 
as in first lens
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Achromatic optics, explained

Beam size is large,  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Achromatic optics, explained

Emittance growth 
cancelled 
(by symmetry)

Refocused by 
second lens
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Achromatic optics, explained

Emittance 
preserved!

Dispersion 
cancelled!

Beam 
refocused!
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Achromatic optics, explained

Emittance 
preserved!

Dispersion 
cancelled!

Beam 
refocused!

Nonlinear plasma lenses solve staging problem #3:  
Emittance growth from chromaticity cancelled3
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Stages separated by bunch compressors
> The achromatic lattice has a non-zero longitudinal lattice dispersion (R56): 

> Results in a compression/stretching between stages…
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Chicanes and advanced accelerators: 
Sears et al. PRSTAB 11, 101301 (2008), Mayet et al. IPAC (2017), Ferran Pousa et al. PRL 123, 054801 (2019), Ferran Pousa et al. PRL 129, 094801 (2022)
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A self-correction mechanism in longitudinal phase space

Start: 
Initial particle distribution

10 GeV

σδ = 0.50% rms

Δ = 0.00%
-4

-2

0

2

4
R

el
. e

ne
rg

y 
of

fs
et

 (%
)

R56 = 0.00 mm

-150 -100 -50
Longitudinal position (μm)

-15

-10

-5

E
z (G

V
/m

)
a

12 GeV

σδ = 1.30% rms

Δ = -0.15%

R56 = 0.00 mm

-150 -100 -50
Longitudinal position (μm)

b
12 GeV

σδ = 1.30% rms

Δ = -0.15%

R56 = 0.34 mm

-150 -100 -50
Longitudinal position (μm)

c
40 GeV

σδ = 0.42% rms

Δ = -0.08%

R56 = 0.19 mm

-150 -100 -50
Longitudinal position (μm)

d
120 GeV

σδ = 0.17% rms

Δ = -0.01%

R56 = 0.11 mm

-150 -100 -50
Longitudinal position (μm)

e
500 GeV

σδ = 0.07% rms

Δ = 0.03%

0
10
20
30

C
ur

re
nt

 (k
A

)

0

0.2

0.4

0.6

C
ha

rg
e 

de
ns

ity
 (n

C
/μ

m
/%

)

R56 = 0.05 mm

-150 -100 -50 0
Longitudinal position (μm)

f

Particle
source

 Application

Magnetic chicaneAccelerator
stage

a b c d e f

Stage 15 Stage 55 Stage 245

Preprint: Lindstrøm, arXiv:2104.14460 (2021)

https://arxiv.org/abs/2104.14460
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Plasma accelerator stage: 
Particles gain energy based on their position
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A self-correction mechanism in longitudinal phase space

Preprint: Lindstrøm, arXiv:2104.14460 (2021)

https://arxiv.org/abs/2104.14460
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Magnetic chicane: 
Move particles longitudinally based on energy offset
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Several stages: 
Particles move in oval tracks, 

converging to an equilibrium current profile
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More stages: 
Relative energy spread and offsets  

damped with energy gain
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End result: 
Optimal current profile, flattened wakefield 

low energy spread, small energy offset
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Passive stabilization: Significantly improved tolerances

Lower charge Higher charge Lower density Higher density Too long Too short

> Feedback mechanism self-corrects every aspect of the current profile: 
> Tolerant to errors in timing, charge, peak current, bunch length 
> In this example: 1 – 200 fs FWHM synchronisation tolerance
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Passive stabilization: Significantly improved tolerances

Self-stabilization solve staging problem #4:  
Greatly reduced synchronization tolerances4

Lower charge Higher charge Lower density Higher density Too long Too short

> Feedback mechanism self-corrects every aspect of the current profile: 
> Tolerant to errors in timing, charge, peak current, bunch length 
> In this example: 1 – 200 fs FWHM synchronisation tolerance
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Assuming it exists… now what?
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Plasma-based photon collider—a cheap Higgs factory?

> Plasma accelerators can likely provide high energy, beam 
quality and rep. rate for electrons, but maybe not positrons. 

> Photon colliders can function with electron bunches only: 
> Generate gamma-beams by inverse Compton 

scattering of laser photons off high-energy electrons. 
> The gamma-beam takes the properties of the 

electron beam (e.g., emittance) 
> Advantage: gamma–gamma Higgs factory can operate 

directly at the Higgs resonance (125 GeV) instead of at 
Higgs+Z (~250 GeV)—large cost reduction. 

> Disadvantage: Powerful colliding laser requires R&D. 
> Plasma-based photon collider proposed already in 1998. 

> Now we have may have the tools to realize it!

From: Badelek et al., TESLA Technical Design Report, Part VI (2001)

From: Rosenzweig et al., NIM A 410, 532 (1998)
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Postdoc advertisement 

Uni. Oslo is currently offering a postdoc position (link) 

to study challenges toward a plasma-based photon collider, 

theoretically and in experiments. 

(Deadline: Oct 5)

https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
https://www.jobbnorge.no/en/available-jobs/job/232373/postdoctoral-research-fellow-in-accelerator-physics
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“Missing Middle”: A multistage facility for nonlinear QED

> Nonlinear QED: reach Schwinger field by colliding ultrarelativistic electrons and intense laser. 
> Experiments at SLAC (E144) and RAL (Astra-Gemini): χ ≈ 0.3 (fraction of Schwinger field) 
> Planned experiments at SLAC (E320, χ ≈ 1+) and potentially EuXFEL (LUXE, χ ≈ 0.5–5) 

> Needs high particle energy, but modest requirements on beam quality and rep. rate. 
> Ideal demonstrator facility for staging: Stepping stone toward a gamma–gamma collider.
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Schematic cartoon of multistage plasma accelerator for strong-field QED experiments.
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Conclusions
> Staging is likely required to reach high energies, efficiently. 
> Four staging problems: 

> Compactness 
> In- and out-coupling of drivers 
> Emittance growth from chromatic mismatching 
> Tight synchronization tolerances 

> Nonlinear plasma lenses can potentially solve all the 
above problems. 

> Future work: 
> How do we realize this nonlinear plasma lens? 
> What is the 6D dynamics of multiple plasma 

accelerators + nonlinear plasma lenses? 
> Can we use this to design compact high-energy 

facilities—for nonlinear QED or a Higgs factory?
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