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A 7-Year initiative in DLA was funded by the Gordon .

and Betty Moore Foundation (2015 - 2022)

From SLAC newsroom:
“Moore Grant to Develop
Working ‘Accelerator on a
Chip’ Prototype” (November
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$19.5M / 7 years
6 universities, SLAC, DESY,
PSI, 2 industry partners
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DEFLECTOR/UNDULATOR

60 grad students/postdocs
funded by the grant
20+ Ph.D. awarded

Niedermayer et al., “Three Dimensional Alternating-Phase
Focusing for Dielectric-Laser Electron Accelerators”, Phys.
Rev. Lett., 125, 164801 (2020)

Hirano et al., “A compact electron source for the dielectric laser
accelerator”, Appl. Phys. Lett. (2020)

Schonenberger et al., “Generation and Characterization of
Attosecond Microbunched Electron Pulse Trains via Dielectric

Laser Acceleration”, Phys. Rev. Lett. 123, 264803 (2019) Sapra et al,, “On-chip integrated laser-driven particle

accelerator”, Science, 367, 6473 (2020)

Black et al., “Net Acceleration and Direct Measurement of
Attosecond Electron Pulses in a Silicon Dielectric Laser
Accelerator”, Phys. Rev. Lett. (2019)
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71 Demonstration of electron acceleration in a
laser-driven dielectric microstructure

E. A. Peralta’, K. Soong’, R. ). England’, E. R. Colby?, Z. W', B. Montazeri’, C. McGuinness', J. McNeur*, K. J. Leedle?, D, Walz?,
E. B. Sozer®, B. Cowan’, B. Schwartz®, G. Travish® & R. L. Byer'

dol:10.1038/nature12664

Dielectric laser accelerators

R. Joel England et al.
Rev. Mod. Phys. 86, 1337 — Published 23 December 2014

COMMUNICATIONS

PHYSICS

High-field nonlinear optical response and phase controlina
dielectriclaser accelerator

D. Cesar, et al., Comm. Phys. 1, 46 (2018)




5th workshop on Applications of Dielectric Laser Accelerators

; September 27, 2021
FAU Erlangen-Nurnberg
. America/Los_Angeles timezone

Overview

US High energy physics panel (2015) recommends to “reduce funding
for direct laser acceleration activities considering them not a viable
solution for future lepton collider.

Venue

Timetable

Contribution List

Remote participation

Access

Coherent radiation applications required large charge per bunch o
which is incompatible with the small aperture. R

Restaurants - Lunch and
dinner options

Still, DLA has an important advantage in terms of development path
for accelerator mass production (comm. laser and nanofab)

We are pleased to announce a one-day by-invitation-only meeting to be hosted on September 27, 2021 in
Erlangen, Germany. The goal of this meeting is to explore applications for a future compact dielectric
micro-structure based accelerator powered by ultrafast solid state lasers. This approach to particle
acceleration, colloquially referred to as an "accelerator on a chip”’, has garnered increasing interest in
recent years.

The Accelerator on a Chip International Program (ACHIP), a multi-institutional research program led by
Stanford University and Friedrich-Alexander-University Erlangen-Nuremberg (FAU), and funded by the
Gordon and Betty Moore Foundation, has been formed to address the many scientific and engineering

Radiobiology, Endoscopic

Medical 5 yrs 100 keV to 10 MeV
UED/UEM and Attosecond

Science
Radiation Sources (EUV,

IR, THz)

Compton X-ray Source

Science 5yrs 1-5 MeV

Industry 5-10 yrs 10 to 100 MeV
Medical 5-10yrs 10 to 60 MeV
Medical 10-20 yrs 70 to 250 MeV
Science 10-20 yrs 1 GeV

Science 10-20 yrs 1 GeV

Industry 20+ yrs 15 keV to 1 MeV

Proton/Hadron Therapy

Compact XFEL
Multi-Axis Tomography

Colliding Beam Fusion

-

Linear Collider HEP 20+ yrs 1to 10 TeV
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e- 1-5 mW

e- 10 to 50 uW

e- oO5W

e- 20 to 60 mW

p+ 3-400 mW

e- 1.5 kW

e- 1.5 kW

p+ 1 MW

3

e-/e+ 10 to 200 MW



Experiments with relavistic beams have
demonstrated record gradients and energy gain.

SLAC/UCLA: 0.85 GeV/m* SLAC/UCLA: 0.3 MeV energy gain**
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* D. Cesar et al, Communications Physics 1(4), 1-7 (2018)
** D, Cesar et al, Optics Express 26 (22), 29216 (2018)




EXpe ri me nta I Setu p Kozék, M., McNeur, J., Schénenberger, N., llimer, J., Li, A., Tafel, A., ... &

Hommelhoft, P. (2018). Journal of Applied Physics, 124(2), 023104.
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Yousefi et al., Opt. Lett. 44, 6 (2019)




Alternating phase focusing effect: proof of principle
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R. Shiloh, J. lllmer, T. Chlouba, P. Yousefi, N. Niedermayer, U., Egenolf, T., Boine-
Schonenberger, U. Niedermayer, A. Mittelbach, | Frankenheim, O., Hommelhoff P., Physical o
P. Hommelhoff, Nature 597, 498 (2021) review letters 121.21 (2018): 214801. AND guiding

Next step: Acceleration
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What is Dark Matter?

Dark Matter Properties

1. Dark matter does not interact with
electromagnetic forces.(No
absorption or emission)

2. It 1s matter.

3. Dark matter interacts weakly with
standard model particles and
itself. (As weakly as weak nuclear

forces or even weaker)

https://www.nasa.gov/webbfirstimages
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DARK MATTER SEARCH

» Proposed experiments to search for dark matter in the laboratory

@ Direct search: visible decay to Standard Model particles

Protons or (Absorber/sweeper)
electrons

Decay volume

@ Indirect search: Missing energy/momentum

Electrons
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» Interaction probability ~ &4

= need a very large number of primary

particles ©(1020)

» Interaction probability ~ €2

= need a clean Initial state

(I.e. single electrons with high repetition
rate)

possibility to use a dielectric laser
accelerator?

Need to bring dielectric laser
acceleration technology to the GeV

scale.
Raziyeh Dadashi



RF-Cavity-Based Ultrafast Transmission Electron Microscope
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Wrap-up

« Pulse generation by beam chopping with miniaturized TM4,, RF-cavity

e 100 fs pulses @ rep rate 3 GHz or 75 MHz

e Fast switching between continuous and pulsed mode operation
« High Brightness (- 1074m2srv1 ) and energy spread (0.9 eV)

« fs-laser oscillator integrated into the microcope
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