International Landscape: Facilities, projects, initiatives

M. J. Hogan (SLAC) on behalf of: C. Geddes (LBNL), M. Kando (QST), W. Lu (Tsinghua) , and P. Musumeci (UCLA)

EUROPEAN NETWORK FOR NOVEL ACCELERATORS

September 19, 2022

Some context for this session

- Since the birth of AAC the driving force behind much of the research (and funding) has had an eye towards applying the large accelerating gradients we create to enable particle physics at the energy frontier
- Current facilities are monuments to human design and engineering
- Even with aggressive magnet development there are limits to the reach of existing prings like the LHC
- The last e⁻e⁺ linear collider (SLC) turned off 25 years ago
- Size, timescale, CO₂ footprint, power consumption... of proposed next generation facilities is daunting
- Every 5-10 years there are planning processes that survey the desires of the particle physics community and the options coming from the accelerator community
- Two important activities since we last gathered in person: European LDG Expert Panels and 'Snowmass' in the US

European Particle Physics Roadmap High-Gradient Novel Accelerators

(1/2021 - 2/2022)

Expert Panel – Panel chairs: Chair: Ralph Assmann (DESY/ INFN) Deputy Chair: Edda Gschwendtner (CERN)

Panel members:

Kevin Cassou (IN2P3/IJCLab), Sebastien Corde (IP Paris), Laura Corner (Liverpool), Brigitte Cros (CNRS UPSay), Massimo Ferarrio (INFN), Simon Hooker (Oxford), Rasmus Ischebeck (PSI), Andrea Latina (CERN), Olle Lundh (Lund), Patric Muggli (MPI Munich), Phi Nghiem (CEA/ IRFU), Jens Osterhoff (DESY), Tor Raubenheimer (SLAC), Arnd Specka (IN2PR/LLR), Jorge Vieira (IST), Matthew Wing (UCL).

Panel associated members:

Cameron Geddes (LBNL), Mark Hogan (SLAC), Wei Lu (Tsinghua U.), Pietro Musumeci (UCLA)

Three pillar R&D roadmap defined, including resources

CFRN-2022-001

TECHNICAL FEASIBILITY, PRE-CDR INTEGRATION & STUDY DEMONSTRATION OUTREACH Scope: Demonstration of critical Synergy and Integration: Bene-Scope: 1st international, coorfeasibility parameters for eter fits for and synergy with other dinated study for self-consistent collider and 1st HEP applications analysis of novel technologies science fields (e.g. structural biology, materials, lasers, health) and their particle physics reach, Concept: Prioritised list of R&D intermediate HEP steps, collider and projects (e.g. EuPRAXIA, ...) that can be performed at existfeasibility, performance, quantiing, planned R&D infrastructures Access: Establishing framework tative cost-size-benefit analysis in national, European, internafor well-defined access to distri-Concept: Comparative paper stutional landscape buted accelerator R&D landdy (main concepts included) scape Milestones: High-rep rate plasma Milestones: Report high energy module, high-efficiency module Innovation: Compact accelerator with high beam quality, scaling of and laser technology spin-offs e' and e' linac module case studies, report physics case(s) and synergies with industry DLA/THz accelerators Deliverable: Feasibility and pre-Training: Involvement and edu-Deliverable: Technical readiness CDR report in 2025 for Eurolevel (TRL) report in 2025 for Eucation of next generation engipean, national decision makers neers and scientists ropean, national decision makers

Next step: Implementation – see several discussions at workshop

European Plasma Research Accelerator with eXcellence In Applications **European High-Tech Project on Accelerator Innovation**

New kind of **COMPACT** Distributed Research Infrastructure Involving 50 Institutes from 15 **Countries** – see full CDR published in 2020

Selected for 2021 Update **ESFRI Roadmap** as first ever plasma acc. project, first accelerator project since HiLumi LHC

569 M€ total cost: ~150 M€ already financed

EU Preparatory Phase project 11/2022 – 2026 to define full implementation: financial, legal, technical

Will serve users (FEL, e+, e-) in biology, health, physics, materials, ... at end of decade

LNF-INFN Frascati, Rome, Italy:

1st construction site & Headquarter in progress

2nd construction site in Europe for a laser-driven plasma accelerator facility to be decided in June 2024

600+ page CDR, 240 scientists contributed

Summary & Conclusions

- Snowmass is a Particle Physics Community Planning Exercise, provides input to P5 to produce scientific vision for the future of particle physics in the U.S. and happens every ~8 years (Originally scheduled for 2021, delayed for 1 year to 2022 due to COVID).
- http://snowmass2021.org
- P5 will prioritize
- Interest has shifted from a TeV-Scale Collider to a **10+ TeV Scale Collider**
- AF Report **encourages R&D on AAC** technologies but does not acknowledge them as being promising 10+ TeV collider options yet
- To be included they asked the AAC Community to develop consistent collider parameters sets, that include detector considerations and to document them together with the technology gaps

See talk by M. Turner

AF WG Conveners

Link to reports: https://snowmass21.org/accelerator/start

AF 6: Advanced Accelerator Concepts

Cameron Geddes Lawrence Berkeley National Lab

Mark Hogan SLAC National Accelerator Lab

AF 4: Multi-TeV Colliders

Pietro Musumeci University of California, Los Angeles

Interchange between

Ralph Assmann Deutsches Elektronen-Sychrotron

Tor Raubenheimer

(SLAC)

Steve Gourlav

(LBNL)

Katsunobu Oide

(KEK)

Philippe Lebrun

(CERN)

Implementation Task Force

Jim Strait

(FNAL)

Thomas Roser

(BNL, Chair)

John Seeman

(SLAC)

Reinhard Brinkmann (DESY)

ALEXANDER VALISHEV

Spencer Gessner

(ORNL)

Vladimir Shiltsev (FNAL)

e+e- collider forum: Maria Chamizo Llatas, Sridhara Dasu, Ulrich Heintz, Emilio A. Nanni, John Power, Stephen Wagner

(SLAC)

Test Facilities at DOE Laboratories

FAST/IOTA Fermilab

AWA Argonne

FACET-II SLAC

ATF Brookhaven

BELLA Berkeley

Beam Test Facilities at DOE Laboratories provide unique and world-leading capabilities for research on Advanced Accelerator Concepts fueled by collaboration with University groups

C³ Cool Copper Collider

C³ is based on a new rf technology

- Dramatically improving efficiency and breakdown rate
- Distributed power to each cavity from a common RF manifold
- Operation at cryogenic temperatures (LN₂ ~80 K)
- Robust operations at high gradient: 120 MeV/m
- Scalable to multi-TeV operation

C³ Prototype One Meter Structure

High Accelerating Gradients at Cryogenic Operation

In Introduction the Center For Bright Beams and its Research J. Maxson, Cornell University

See talk by J. Maxon

Integration of these methods in order to optimize high performance accelerator systems.

Global Landscape for Plasma Acceleration R&D (an incomplete list)

International LWFA R&D Laboratories:

- ELI-Beamlines (Czech)
- ELI-NP (Romania)
- U. Lund (Sweden)
- HZDR (Germany)
- DESY (Germany)
- LMU (Germany)
- Jena (Germany)
- RAL (UK)
- SCAPA (UK)
- U. Oxford (UK)
- LOA (France)
- Apollon (France)
- LULI (France)
- INFN (Italy)
- CoReLS (Korea)
- KPSI (Japan)
- Tsinghua U. (China)
- SIOM (China)
- SJTU (China)
- TIFR (India)
- IAMS (Taiwan)
- ALLS (Canada)
- Weizmann Inst. (Israel)

US LWFA R&D Laboratories:

- LBNL BELLA
- LLNL JLF
- BNL ATF
- SLAC MEC
- U. Texas
- U. Michigan
- LLE (Rochester)
- U. Nebraska
- NRL
- UCLA
- U. Maryland

PWFA/SWFA Laboratories:

- ANL AWA
- BNL ATF
- DESY FLASHForward
- INFN SPARC_Lab
- SLAC FACET-II
- CERN AWAKE (proton)

Compactness of laser systems has led to proliferation of plasma accelerator R&D in laboratories and universities world-wide with activities in Europe, U.S. and Asia

SLAC M. J. Hogan, EuroNNAc Special Topics Workshop, September 19, 2022

See talk by W. Liu

Updates of Plasma Acceleration in China by Wei Lu

Major Laser Facilities: 6 PW+ systems in 1-3years

Institute	Peak Power	rep rate	main research	timeline
SIOM	10PW	1shot/min	extreme light physics	laser ready
LFRC	5PW	lshot/hour	extreme light physics	laser ready
IOP	1PW	lshot/min	X ray source (Betatron)	in 1 year
BAQIS+THU	1PW	1Hz	Electron accelerator	in 2 years
PKU	2PW	1Hz	Ion accelerator	in 2 years
SJTU	2PW	lshot/min	Lab Astronomy	in 3 years

Two major initiatives on PWFA

Institute	Facility	Energy	Research		
IHEP	BECP	2. 5GeV	e-/e+ for collider		
SARI	SXFEL	1.5GeV	e- for FEL		

Laser development towards applications:

BAQIS + Qi-NLS + THU

- 7+ years effort on compact industry level TW-PW lasers
- Lasers with much reduced size, enhanced long term performance
- Table top ultrafast synchrotron light sources demonstrated (with very compact 20-40TW systems)

Courtesy K. Masaki and Prof. Kim and Prof. Nam of GIST 10000 Nd:glass IBS/APRI/GIST H Nd:glass/Ti:S (21 fs) TW and PW laser facilities in Korea Ti:S APRI/GIST (30 fs) ETRI 1000 (30 fs) Peak Power (TW) APR//GIST Facility Location Peak **Pulse** Year Research Energy Rep ETRI (30 fs) 100 (30 fs) (city) **(J)** width rate power ops. KAERI DPPS/GIST (Hz) **(fs)** (PW) (35 fs) KERI 10 (25 fs) **KERI** 0.02 0.5 25 10 **Electron** acceleration 2009 Ansan KAIST KERI (40 ps) (700 fs) (H) GIST 0.02 0.7 35 10 2014 Electron acceleration, X-ray/ Gwangju 2010 2015 2020 1990 1995 2000 2005 THz generation Year *W. Bang et al., J. Korea Korean Phys. Soc. **KAERI** 0.9 30 10 Electron/ion acceleration, Daejeon 0.03 2009 Electrotechnology (2022).Seoul Research Institute X-ray/THz generation **KERI** Ansan Electronics and Telecommunications CoReLS (IBS) Gwangju 0.15 3.8 25 5 2017 Electron/ion acceleration, Daejeon Korea Atomic **Research Institute** X-ray/THz generation, HEDP **Energy Research** ETRI Institute studies **KAERI** Gwangju 0.5 Electron/ion acceleration **ETRI** Daejeon 15 30 0.1 2016 Gwangju Institute of Naju/ (0.2)(5) (2012)(25)(10)Science and Center for Relativistic Laser Science CoReLS Technology 80 + 20Electron/ion acceleration, CoReLS (IBS) Gwangiu 4 + 120 0.1 2017 GIST X-ray/ γ -ray generation, **Future** Strong-field QED studies 200 PW facility Single-Initiative 200 4000 20 2034 Ultra-intense laser-matter Naju shot interactions

Courtesy K. Masaki

Laser-Acceleration facilities in Japan

Project (MIRAI, 2017-2026)

Osaka U, QST, KEK, RIKEN, JASRI, IMS

- LA based FEL
- LA based carbon injector for cancer therapy
- Related laser development (100J, 100 Hz pump, 2J, 50 Hz pump)

Laser electron Platform (RIKEN)

Future cancer therapy system based on LA

Planned : J-EPoCH laser facility

Osaka U, QST

Multi-beam,

- 1 PW, 100Hz Multi-function
- 20 PW, 10 Hz f

for various scientific fields

International Landscape: Facilities, projects, initiatives

- Exciting to re-engage with larger AAC community as we climb out of the COVID cocoon
- In AAC we need to engage broader communities of particle physicists and accelerator builders
- Parameter sets/IDS, deliver on commitments for R&D
- First applications are a strength
- Advocate for all
- Looking forward to interesting discussions - how can we engage across regions on these topics that are international in scope?

Sun 1	8/09	Mon 19/09	Tue 20/09	Wed 21/09	Thu 22/09	Fri 23/09	Sat 24/09	All days		
				🔤 Prin	t PDF	Full scr	een De	tailed view	Filter	
							Ses	sion legend		
09:00	Co	nclusions from	the 2021 Snov	vmass Process					Marlene Tun	
	Sala Maria Luisa - Hotel Hermitage							09:00 - 09		
	US Advanced Accelerator Facilities							Spencer Gessr		
	Sal	la Maria Luisa - I	Hotel Hermitage	,					09:30 - 10	
10:00	an	update on adva	anced plasma a	accelerator activ	vities in China				Wei	
									10:00 - 10	
	Col	ffee Break tel Hermitage, Li	a Biodola Bay, I	sola d'Elba, Italy					10:30 - 10	
	The	e Cool Copper (Collider						Ankur Di	
11:00	Sal	la Maria Luisa - I	Hotel Hermitage	,					10:50 - 11	
	An	Introduction to	the Center for	Bright Beams a	and its Researc	sh i			Jared Maxs	
	Sal	la Maria Luisa - I	Hotel Hermitage	,					11:20 - 11	
12.00	Dis	cussion								
12.00										
	Sal	la Maria Luisa - I	Hotel Hermitage	K.					11:50 - 12	