

EuroNNAc Special Topics Workshop IFAST - WP6 Novel Particle Accelerators Concepts and Technologies

19 – 26 September 2022, Elba, Italy

Ralph Assmann, DESY & LNF/INFN Massimo Ferrario, LNF/INFN

ly	

EuroNNAc – A Success Story for our Community since 2011 (Europe Teaming Up)

- Founded within the EuCARD European project in 2011 with special CERN funding (thanks to J.P. Koutchouk and R. Heuer): Coordinator: RA, CERN
- Continued in EuCARD2 (coord. J.P. Koutchouk) with EU funding: 2013 2017. Coord: RA, DESY
- Continued in ARIES (coord: M. Vretenar) with EU funding: 2017 2021. Coord: RA, DESY
- Continued in I-FAST (coord: M. Vretenar) with EU funding: 2021 2025. Coord: RA, DESY/INFN & Massimo Ferrario, INFN. >60 institutes in Europe, Asia, US.
- Our work considered a great success. Final 2022 review of ARIES by EU commission mentions our work as one of several highlights: «They have also explored and foster plasma and laser-based acceleration, contributing to the integration of EuPRAXIA plasma-based Free Electron Laser in the ESFRI Roadmap.».

Tasks of WP6 – Novel Particle Accelerators Concepts and Technologies

 Task 1 (RA + M. Ferrario): **Novel Particle Accelerators Concepts and Technologies** (NPACT – EuroNNAc4) M1 – M48 Sub-task leaders: **B. Holzer** (CERN), **P. Nghie** (CEA), A. Specka (CNRS), R. Walczak (Oxford) • Task 2 (Leo Gizzi): Lasers for Plasma Acceleration (LASPLA) M1 – M48 Task 3 (Cedric Thaury): Multi-scale Innovative targets for laser-plasma accelerators (MILPAT) M1 - M32 Task 4 (Francois Mathieu): Laser focal Spot Stabilization Systems (L3S) M1 – M36

WP6 Milestones

May 2023

- MS21: Report on the novel accelerator landscape in Europe, facilities, projects and capabilities at the beginning of the 2020's. Lead – DESY, M24, Publication, website (task 6.1)
- MS22: LASPLA Workshop/School. Lead CNR, M30, Report (task 6.2)
- MS23 Target manufacturing and characterization. Lead CNRS, M12 Report (task 6.3)
- MS24: Hypothesis on the causes of the instabilities of the focal spot profile. Lead – CNRS, M24 Publication (task 6.4)

This Special Topics workshop will **prepare the milestone MS21**. Thanks to all **session organizers** and **participants** for your help!

WP6 Deliverables

Deliverables related to WP6	v 2024
D6.1: EAAC workshops and strategies. Report on the EAAC workshops as strategic forums for international accelerator R&D and resulting strategies	M42
D6.2: LASPLA Strategy. Report on a strategy for laser drivers for plasma accelerators.	M46
D6.2: Electron acceleration experiments with new targets. <i>Report on electron acceleration with micro-scale target at a kHz repetition rate, and with long targets at the multi-Joule level.</i>	M24
D6.4: Improvement of the laser intensity stability on target. <i>Report showing the stability on two laser facilities before and after improvement.</i>	M36

2011: The Start of Our Network

IFAST

2011 Goals

EUCARD

Draft Mandate/Mission I

- Develop goals from photon science and particle physics for advanced e-beam accelerators, including timeline.
 5y, 10y, 20y goals and perspectives.
- 2. Describe coherent program for research on novel ebeam accelerators. What are the main components of this program?
- 3. Define reference measurements to qualify facilities for photon science and/or particle physics, including definition of standards.
- 4. Produce white-paper summarizing European efforts/goals with comments on world efforts.

Draft Mandate/Mission II

- Create framework for open facilities. EuroNNAc to describe and further develop coherent network of test facilities, document capabilities, review requests, discuss work share. "Distributed accelerator test facility for synchrotron science and particle physics"
- 6. Each facility to propose its main speciality (1-2) on what they want to offer for collaboration.
- Ask FP7/8 support for such a "distributed open test facility", including support for beam/laser time for users. Use also LaserLab opportunities.

EUCARD

2011 Goals

EUCARD Draft Mandate/Mission III

9. Foster transfer of technology between communities and with industry.

- 10. Propose adequate funding mechanisms to support university-based accelerator research with long-term scientific benefits.
- 11. Creation of a "European School: From Conventional to Novel Accelerators", linked to CAS or other series.
- 12. Support training of students and specialists.
- 13. Organize a European Advanced Accelerator Conference every second year.

14. Vision on the time-scale of one or few centralized "big" facilities, beyond present projects.

Draft Mandate/Mission III

- From "distributed test facility" to a "pilot e-beam facility".
- Pilot facility runs 24h 7/7 to produce agreed e-beam.
- What does "big" mean? Beam parameters? How many?
- How to split beam time for synchrotron radiation, medical applications and High Energy Physics applications?
- 15. Prepare significant FP8 proposal for pilot facility(ies), beyond present projects. Time scale?
- 16. Foster inter-disciplinary work on theory and simulations.

03 May 2011

R. Assmann

03 May 2011

EUCARD

R. Assmann

This network organizes EAAC, applies for EU funding and supports the students with this funding.

EAAC 2015 (258 participants)

İFAST

• Number of participants: 267 (> 70 applications not accepted)

European Hybrid **A**dvanced

Accelerator

Concepts

Workshop

5th Edition

IFAST

Fabio Villa

Fabio Bossi lessandro Gallo

2011: 10 Year Technical Goals

Summary "Brainstorming: European and World Plans"

06.05.2011, 11:20
 20m
 30/7-018 - Kjell Johnsen Auditorium (CERN)

Sprecher

- Laboratoire Leprince...
- Lens Osterhoff (University of Hambur...

EUCARD Draft Collection Goals

- What are the top goals of the field (10y ahead)?
 - Demonstrate working plasma-based FEL at realistic frequencies
 - Reliable 24/7 operation of plasma-based accelerators at 1 GeV
 - Staging
 - High beam quality at 10 GeV from plasma accelerators
 - GV/m positron acceleration with plasma devices while preserving emittance
 - Demonstrate proton drivers for wake acceleration

Discussion

- What are the top goals of the field (10y ahead)?
 - Demonstrate working plasma-based FEL at realistic frequencies
 - Reliable 24/7 operation of plasma-based accelerators at 1 GeV
 - Staging
 - High beam quality at 10 GeV from plasma accelerators
 - GV/m positron acceleration with plasma devices while preserving emittance
 - Demonstrate proton drivers for wake acceleration

2011: 10 Year Technical Goals – Achieved?

Summary "Brainstorming: European and World Plans"

06.05.2011, 11:20
 20m
 30/7-018 - Kjell Johnsen Auditorium (CERN)

Sprecher

Henri Videau (Laboratoire Leprince...
Jens Osterhoff (University of Hambur...

Not perfect, but also not bad at all.

Of course, more work to be done.

ST sessions will tell us much more.

Discussion

• What are the top goals of the field (10y ahead)?

8

- Demonstrate working plasma-based FEL at realistic frequencies
- Reliable 24/7 operation of plasma-based accelerators at 1 GeV 0.2 GeV
- Staging 🔽
- High beam quality at 10 GeV from plasma accelerators
- GV/m positron acceleration with plasma devices while preserving emittance
- Demonstrate proton drivers for wake acceleration

2011 Goals

EUCARD Draft Mandate/Mission III

9. Foster transfer of technology between communities and with industry.

- 10. Propose adequate funding mechanisms to support university-based accelerator research with long-term scientific benefits.
- 11. Creation of a "European School: From Conventional to Novel Accelerators", linked to CAS or other series.
- 12. Support training of students and specialists.
- 13. Organize a European Advanced Accelerator Conference every second year.

14. Vision on the time-scale of one or few centralized "big" facilities, beyond present projects.

Draft Mandate/Mission III

- From "distributed test facility" to a "pilot e-beam facility".
- Pilot facility runs 24h 7/7 to produce agreed e-beam.
- What does "big" mean? Beam parameters? How many?
- How to split beam time for synchrotron radiation, medical applications and High Energy Physics applications?
- 15. Prepare significant FP8 proposal for pilot facility(ies), beyond present projects. Time scale?
- 16. Foster inter-disciplinary work on theory and simulations.

R. Assmann – NPACT-EuroNNAc ST Workshop 2022

EUCARD

IFAST WP6/NPACT – Strategy

• EuPRAXIA:

- World-wide 1st conceptual design report of the accelerator facility based on plasma accelerators
- Consortium grown since 2015 to > 50 institutes, 17 countries
- Only new accelerator project on ESFRI roadmap since 2016 and 1st preparatory phase project since Hi-Lumi LHC.
- Plasma accelerators for particle physics:
 - Follow-up to European strategy for particle physics
 - Part of European accelerator R&D program

European Plasma Research Accelerator with excellence In Applications

European High-Tech Project on Accelerator Innovation

New kind of **COMPACT** Distributed Research Infrastructure Involving 50 Institutes from **15 Countries** – see full CDR published in 2020

Selected for 2021 Update ESFRI Roadmap as first ever plasma acc. project, first accelerator project since HiLumi LHC

569 M€ total cost: ~150 M€ already financed

EU Preparatory Phase project 11/2022 – 2026 to define full implementation: financial, legal, technical

Will serve users (FEL, e+, e-) in biology, health, physics, materials, ... at end of decade

2nd construction site in Europe for a laser-driven plasma accelerator facility to be decided in June 2024

600+ page CDR, 240 scientists contributed

This project has received funding from the European Union's Horizon 2020

research and innovation programme

European Plasma Research Accelerator with excellence In Applications

Versatile – Designed for Users in Multiple Science Fields

proteins, viruses, bacteria, cells, metals, semiconductors, superconductors, magnetic materials, organic molecules

FAST

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

Two new EuPRAXIA projects approved by EU

EuPRAXIA Preparatory Phase Project

(Nov 2022 - Nov 2026)

Europa / Funding & Tenders Portal notification

Dear Madam/Sir,

12 April 2022, 16:13

Congratulations. Your proposal has reached the stage of Grant Agreement preparation.

To view the evaluation results and the instructions on how to provide additional information and data required for the preparation of your Grant Agreement, log on to the Funding & Tenders Portal > My Proposal(s) (

https://ec.europa.eu/info/funding-

tenders/opportunities/portal/screen/myarea/proposals) and click on Action > Follow-up.

Regards, Grant Management Services

<u>3 M€ EU funding, total value: 8.3 M€</u>

Coordinated by INFN (R. Assmann, M. Ferrario) Will formally establish a "**Board of Financial Sponsors**" with representatives of funding agencies. So far ~ 25% of total (569 M€) M&P funding secured.

EuPRAXIA Doctoral Network

2.6 M€ EU funding, 10 MSCA Fellows Coordinated by University Liverpool (C. Welsch) Start date: 1 Jan 2023

Expert Panel: European Particle Physics Roadmap for High-Gradient Novel Accelerators

Expert Panel – Panel chairs: Chair: Ralph Assmann (DESY/INFN) Deputy Chair: Edda Gschwendtner (CERN)

Panel members:

Kevin Cassou (IN2P3/IJCLab), Sebastien Corde (IP Paris), Laura Corner (Liverpool), Brigitte Cros (CNRS UPSay), Massimo Ferarrio (INFN), Simon Hooker (Oxford), Rasmus Ischebeck (PSI), Andrea Latina (CERN), Olle Lundh (Lund), Patric Muggli (MPI Munich), Phi Nghiem (CEA/IRFU), Jens Osterhoff (DESY), Tor Raubenheimer (SLAC), Arnd Specka (IN2PR/LLR), Jorge Vieira (IST), Matthew Wing (UCL).

Panel associated members:

Cameron Geddes (LBNL), Mark Hogan (SLAC), Wei Lu (Tsinghua U.), Pietro Musumeci (UCLA)

Work performed: Final report: Jan 2021 – Feb 2022 Yellow Report CERN-2022-001

Panel work is completed with report publication. Implementation in next years followed up by Wim Leemans.

The Steps Towards an Advanced Collider

See expert panel report on European Accelerator R&D for Particle Physics

	2021–2025	2026	2027	2028	2029	2030	2031	2032	2033 2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049
Feasibility and pre-CDR on advanced accelerators																								
Definition of particle physics case																								
Selection of technology base for a CDR																								
CDR for an advanced collider																								
TDR, prototyping and preparation phase																								
Dedicated test facility: construction, operation																								
Decision on construction (in view of results and other collider projects)														-	r									
Construction of advanced collider																						1		

Three Pillars of Plasma R&D Roadmap

See expert panel report on European Accelerator R&D for Particle Physics

FEASIBILITY, PRE-CDR STUDY

Scope: 1st international, coordinated study for self-consistent analysis of novel technologies and their particle physics reach, intermediate HEP steps, collider feasibility, performance, quantitative cost-size-benefit analysis

Concept: Comparative paper study (main concepts included)

Milestones: Report high energy e⁻ and e⁺ linac module case studies, report physics case(s) *Deliverable*: Feasibility and pre-CDR report in 2025 for European, national decision makers

TECHNICAL DEMONSTRATION

Scope: Demonstration of critical feasibility parameters for e⁺e⁻ collider and 1st HEP applications

Concept: Prioritised list of R&D that can be performed at existing, planned R&D infrastructures in national, European, international landscape

Milestones: High-rep rate plasma module, high-efficiency module with high beam quality, scaling of DLA/THz accelerators

Deliverable: Technical readiness level (TRL) report in 2025 for European, national decision makers

INTEGRATION & OUTREACH

Synergy and Integration: Benefits for and synergy with other science fields (e.g. structural biology, materials, lasers, health) and projects (e.g. EuPRAXIA, ...)

Access: Establishing framework for well-defined access to distributed accelerator R&D landscape

Innovation: Compact accelerator and laser technology spin-offs and synergies with industry

Training: Involvement and education of next generation engineers and scientists

Case Study: High Energy Accelerator Module e⁻ & e⁺

See expert panel report on European Accelerator R&D for Particle Physics

Table 4.2: Specification for an advanced high energy accelerator module, compatible with CLIC [87].

 Additional CLIC design values are listed for reference in the second part of the table.

Parameter	Unit	Specification
Beam energy (entry into module)	GeV	175
Beam energy (exit from module)	GeV	190
Number of accelerating structures in module	-	≥ 2
Efficiency wall-plug to beam (includes drivers)	%	≥ 10
Bunch charge	pC	833
Relative energy spread (entry/exit)	%	\leq 0.35
Bunch length (entry/exit)	μm	\leq 70
Convoluted normalised emittance $(\gamma \sqrt{\epsilon_h \epsilon_v})$	nm	\leq 135
Emittance growth budget	nm	\leq 3.5
Polarisation	%	80 (for e ⁻)
Normalised emittance h/v (exit)	nm	900/20
Bunch separation	ns	0.5
Number of bunches per train	-	352
Repetition rate of train	Hz	50
Beamline length (175 to 190 GeV)	m	250
Efficiency: wall-plug to drive beam	%	58
Efficiency: drive beam to main beam	%	22
Luminosity	$10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	1.5

Possible intermediate steps at lower energies for experiments in Particle Physics

Table 4.3: Specification for an electron beam for fixed-target (FT) experiments, generated by a dielectric laser accelerator (inspired by the eSPS specifications [88]) as well as for electron bunches from plasma accelerators for PEPIC [91–93], a low-luminosity LHeC-like collider [89] and for the LUXE experiment [90]. Such bunches (for PEPIC and LUXE) can also be used for a beam-dump experiment to search for dark photons. Note that the number of bunches per train in the European XFEL is 2700, but for LUXE only one is used.

Parameter	Unit	single e FT	PEPIC	LUXE
Bunch charge	pC	few e	800	250
Final energy	GeV	20	70	16.5
Relative energy spread	%	< 1	2 - 3	0.1
Bunch length	μm	-	30	30 - 50
Normalised emittance	μm	100	10	1.4
Number of bunches per train	-	1	320	1
Repetition rate	-	1 GHz	0.025 Hz	10 Hz
Luminosity	$10^{27}{ m cm}^{-2}{ m s}^{-1}$	-	1.5	-

The Advanced Accelerator R&D Project Plan

See expert panel report on European Accelerator R&D for Particle Physics

30 FTEy

10 FTEy

800 kCHF

500 kCHF

350 kCHF

16 FTEy

16 FTEv

Table 4.4: Work packages and tasks in the minimal plan.

							-
WP	Task	Short description	Invest	DEL3.1	12/25	High-Repetition	Demonstrates: at least 1 kHz characterised; robust lifetime
			Personnel			Rate Plasma	$(> 10^9$ shots); only the plasma cell; without full repetition
COOR		Coordination Plasma and Laser Accelerators for Particle				Accelerator	rate beam test but including cooling and power handling
		Physics				Module	assessment. Long-term goal: 15 kHz repetition rate.
FEAS		Feasibility and pre-CDR Study on Plasma and Laser	300 kCHF	DEL41	12/25	High-Efficiency	Beam demonstration of high efficiency PWFA module
		Accelerators for Particle Physics	75 FTEy		12/20	Electron Driven	400% transfor officiancy from driver been stored energy to
	FEAS.1	Coordination				Electron-Driven	40% transfer efficiency from driver beam stored energy to
	FEAS.2	Plasma Theory and Numerical Tools				Plasma Accelerator	witness beam stored energy
	FEAS.3	Accelerator Design, Layout and Costing				Module with High	
	FEAS.4	Electron Beam Performance Reach of Advanced				Beam Quality	
		Technologies (Simulation Results - Comparisons)		DEL 5 1	10/05	Seeling of	Steard dislastric laser or TH- concluster with 10 MeV or
	FEAS.5	Positron Beam Performance Reach of Advanced		DEL5.1	12/25	Scaling of	Staged dielectric laser or THZ accelerator with 10 MeV en-
		Technologies (Simulation Results - Comparisons)				DLA/THz	ergy gain, transverse and longitudinal focusing and at least
	FEAS.6	Spin Polarisation Reach with Advanced Accelerators				Accelerators	two stages. Long-term goal: Massively scale-able design
	FEAS.7	Collider Interaction Point Issues and Opportunities with					printed on a chip.
	Advanced Accelerators		DEL 6 1	12/25	Spin Doloricod	Demonstration of polarised electron beams from plasme	
	FEAS.8	Reach in Yearly Integrated Luminosity with Advanced		DEL0.1	12/25	Spin-Folarised	Demonstration of polarised electron beams from plasma
		Accelerators				Beams in Plasma	with 10–20% polarisation fraction. Long-term goal: Polar-
	FEAS.9	Intermediate steps, early particle physics experiments and test				Accelerators	isation 85%.
		facilities					
	FEAS.10	Study WG: Particle Physics with Advanced Accelerators		Tech	nica	I deliverable	es (above) point to high priority
HRRP		Experimental demonstration: High-Repetition Rate Plasma	1200 kCHF	10011			

Technical deliverables (above) point to high priority activities: high repetition rate, efficiency (power), scaling to high energy, spin polarization, ...

Next step: Implementation & secure some funding for the particle physics R&D project

HEFP

DLTA

SPIN

LIAI

Accelerator Module

Plasma Accelerators

Facilities, Other Science Fields

Quality

Accelerators

Experimental demonstration: High-Efficiency,

Experimental demonstration: Scaling of DLA/THz

Experimental demonstration: Spin-Polarised Beams in

Liaison to Ongoing Advanced Accelerator Projects,

Electron-Driven Plasma Accelerator Module with High beam

2022: EuroNNAc Special Topics

- It is not an EAAC
- Following up on EU tasks that we promised but are more easily done in workshop atmosphere with lot's of discussions.
- Limited to 150 participants
- Only one common plenary session, no parallel sessions.

EuroNNAc 10 Years Later & 10 Years in the Future

- The wisdom of the many: ideas that convince in common discussion, brainstorming, bottom up science drive our field – 150 brains have more power than a few brains – well prepared ideas win in physics.
- 2011: bringing us together created realistic 10 year goals, more or less achieved, new unifying concepts attracted funding support (EAAC, students, prizes, plasma acc. facilities AWAKE-EuPRAXIA-...)
- Use the unique Elba retreat atmosphere for an iteration: What are our common goals (ambitious but realistic) for the next 10 years – in strategy, facility and in technical terms?
- Special topics will focus discussion on specific challenges use coffee, lunch, dinner and the beach to keep discussing and brainstorming.

	Towards milestone report MS21 for EuroNNAc in May 2023	Rainh Assmann et al
		17:50 10:00
	Sala Maria Luisa - Hotel Hermitage	17:50 - 18:00
18:00	Summary - Beam-driven Plasma Accelerators with focus on proton-driven	Edda Gschwendtner et al.
	Sala Maria Luisa - Hotel Hermitage	18:00 - 18:07
	Summary - Simulation tools and roadmap	Jorge Vieira et al.
	Sala Maria Luisa - Hotel Hermitage	18:07 - 18:14
	Summary - Laser Technology and LWFA Results (e-, p+, ion)L	eonida Antonio Gizzi et al.
	Sala Maria Luisa - Hotel Hermitage	18:14 - 18:21
	Summary - Distributed Plasma Accelerator Landscape in Europe and Technical Progress toward Enrica Chiadroni et al.	s Applications (EuPRA
	Summary - Talks and discussion on plasma-based FEL experiments	Arie Irman
	Sala Maria Luisa - Hotel Hermitage	18:28 - 18:35
	Summary - Particle physics plasma test facility (multi-stage, 10`s of GeV)	Carl Schroeder
	Sala Maria Luisa - Hotel Hermitage	18:35 - 18:42
	Summary - EuroNNAc Student and Young Researher Program - Posters, prizes,	Bernhard Holzer et al.
	Sala Maria Luisa - Hotel Hermitage	18:42 - 18:49
	Summary - International Landscape: Facilities, projects, initiatives	Mark Hogan et al.
	Sala Maria Luisa - Hotel Hermitage	18:49 - 18:56
19:00	Summary - Structure-based accelerators (e.g. ACHIP) and advanced radiation generation schem	es Rasmus Ischebeck
	Sala Maria Luisa - Hotel Hermitage	18:56 - 19:03
	Workshop Closure	Massimo Ferrario et al.
	Sala Maria Luisa - Hotel Hermitage	19:03 - 19:13

R. Assmann – NPACT-EuroNNAc ST Workshop 2022

SUMMARIES

IFAJI

WP6 Milestones

May 2023

- MS21: Report on the novel accelerator landscape in Europe, facilities, projects and capabilities at the beginning of the 2020's. Lead – DESY, M24, Publication, website (task 6.1)
- MS22: LASPLA Workshop/School. Lead CNR, M30, Report (task 6.2)
- MS23 Target manufacturing and characterization. Lead CNRS, M12 Report (task 6.3)
- MS24: Hypothesis on the causes of the instabilities of the focal spot profile. Lead – CNRS, M24 Publication (task 6.4)

This Special Topics workshop will **prepare the milestone MS21**. Thanks to all **session organizers** and **participants** for your help!

NPACT/EuroNNAc Meeting Saturday

- Saturday will discuss EAAC2023, propsoal of a new Bob Siemann prize, how to make our facilities and projects a full success, ...
- Let us know your proposals for the future of the field.

Meetings Overview (see also 2023)

-EuroNNAc Special Topics Workshop: 18-24 September 2022

Program includes the Simon van der Meer Early Career Award in Novel Accelerators, Student sessions and the Poster Prize

-AAC 2022 takes place in the US (6-11 November 2022)

-EAAC 2023, 17-23 September 2023

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No 101004730.