A new Scattering and Neutrino detector at the LHC

Elena Graverini, for the SND@LHC collaboration

École Polytechnique Fédérale, Lausanne

Les Rencontres de Physique de la Vallée d'Aoste: results and perspectives in particle physics

La Thuile, March 12, 2022

Scattering and Neutrino Detector at the LHC

- compact experiment observing forward neutrinos produced in LHC pp collisions
- 480 m far from ATLAS IP1, in the TI18 tunnel, slightly off-axis: $7.2 < \eta < 8.4$ •
- approved by CERN Research Board one year ago, now installed and commissioning ongoing
- SND@LHC collaboration: 180 members from 23 institutes in 13 countries and CERN

Motivation

- LHC neutrinos range from 10^2 GeV to TeV
 - relatively large interaction cross-section
- 250 fb⁻¹ luminosity in Run 3
- 1 ton compact detector:
 - expect \sim 2000 neutrino interactions
 - of all flavours!
- off-axis range probes heavy flavour decays
- ν_e, ν_τ produced mainly in charm decays
 - measure charm production in unexplored energy range
- low-energy ν_{μ} also from π, K decays

Physics goals

Neutrino physics at LHC energies

- measure $pp \rightarrow \nu X$ cross-sections
- probe charm quark production with ν_e . Relevant for:
 - future colliders: FCC-*hh* will probe same *x* at larger angles
 - cosmic ray physics:
 - energy scale corresponds to VHE atmospheric neutrinos, main BG for astrophysical neutrinos
 - charm production leading production mechanism for VHE atmospheric neutrinos
- probe consistency of SM: LFU in the neutrino sector

Search for new physics

- direct search of feebly interacting particles through scattering signature
- e.g. $\chi + p/e \rightarrow \chi + p/e$, or $\chi + p/n \rightarrow \chi + X$

4/22

Veto

- upstream veto: two planes of scintillating bars
 - tag and discard events with incoming muons

/22

Target region: vertexing, τ ID, energy measurement (ECAL)

- 40 X_0 sampling calorimeter \longrightarrow contain whole shower
- emulsion cloud chambers (ECC): interleaved tungsten plates / emulsions
 - vertexing, τ identification

22

 scintillating fiber planes (SciFi): timing / position

Downstream region

- muon system: timing, muon ID, energy measurement (HCAL)
 - interleaved plastic scintillator bars / iron planes

/22

– sampling every λ

Elena Graverini (EPFL)

Data aquisition

- all electronic detectors read out by SiPMs
- 37 identical DAQ boards synced with LHC bx clock
- triggerless experiment: real-time data reduction based on software
 - all front-end recorded hits are sent to servers for processing
 - noise reduction: keep events with $\mathtt{N}_{\mathtt{min}}$ (configurable) detector planes hit
 - expected output of 400k hits/s (available bandwidth 1M hits/s)
 - $\longrightarrow\,$ keep possibility to loosen FE thresholds on SciFi to raise efficiency

Elena Graverini (EPFL)

Two-phase event reconstruction

Online, using electronic detectors

- identify scattering candidate (neutrino or FIP)
- identify muon candidates (downstream muon planes), EM shower (SciFi)
- measure neutrino energy (SciFi + muon, hit counting or machine learning techniques)

Offline, with nuclear emulsions

[J. Phys. G: Nucl. Part. Phys. 46 115008]

- develop & scan films extracted in quick access after \sim 25 fb⁻¹exposure (\sim 3 months)
- reconstruct ν interaction vertex, τ candidates
- match showers with events recorded by electronics detectors

Nuclear emulsions

- sub-micrometric position resolution
- optical system for scanning emulsion films
- commissioned with cosmic rays tracks

Simulation & expected neutrino flux

[than]	ks CERN	Fluka	team!]
	to only	A ALLALLE	c.c.u.

22

Flavour	Neutrinos in acceptance	CC neutrino i 〈E〉[GeV]	nteractions Yield	NC neutrino i (E) [GeV]	nteractions Yield
ν_{μ}	2.1×10^{12}	450	730	480	220
$\bar{\nu}_{\mu}$	1.8×10^{12}	485	290	480	110
ν_e	2.6×10^{11}	760	235	720	70
$\bar{\nu}_e$	2.8×10^{11}	680	120	720	44
ν_{τ}	1.5×10^{10}	740	14	740	4
$\bar{\nu}_{\tau}$	1.7×10^{10}	740	6	740	2
all	4.5×10^{12}		1395		450

note: estimates for 150 fb⁻¹! to be updated for 250 fb⁻¹

- ν production in *pp* collisions at LHC simulated with FLUKA + DPMJET-3
 - full description of all machine elements from IP1 to TI18
- ν_{τ} production with PYTHIA8
- ν interactions in detector: GENIE
- detector response: GEANT4

Physics performance: key features

Flavour identification

- ν_{μ} ID efficiency ~77% driven by acceptance and occupancy (μ in donwstream Muon planes)
- ν_e identified by presence of EM shower in the ECC brick (99% efficiency)
- ν_{τ} ID relies on topological criteria (secondary vertex), ~50% efficient

Energy measurement

- SND@LHC is a non-homogeneous sampling calorimeter
- overall energy resolution ${\sim}20{\text{-}}30\%$
- response modelled with linear regression, ML alternative under construction

22

Commissioning

- Detector commissioned at SPS before installation (August-October 2021)
 - cosmic rays on SciFi: test of DAQ / event building; tune simulation parameters
 - SPS H6 muon beam on full detector: test of electronics response
 - SPS H8 pion beam on Muon system: calibrate energy measurement
- Commissioning in TI18 until February 2022
 - from now on: longer commissioning runs (calibrate thresholds / dark rate) with (rare) cosmics, then with ramping-up LHC collisions starting from mid-May.

Commissioning results

Δt between two ends of scintillator bar

charge per event as a function of beam energy in upstream muon stations

22

Elena Graverini (EPFL)

Installation

- Installation in TI18 started in November 2021:
 - first half of November: mechanical structure, iron blocks, cooling plant
 - end of November: SciFi; beginning of December: Muon system
- Last week: alignment survey, start neutron shield/cold box installation
- Ongoing this week: monitoring system (temperature, humidity) + box installation
- Soon: equip 1/5 of target with sensitive films for BG measurement

122

Installation: souvenir pics

September 2021

December 2021

Installation: souvenir pics

/22

Neutrino physics: ν_e and charm

- 90% of ν_e + $\bar{\nu}_e$ produced in charm decays
 - $\implies \nu_e + \bar{\nu}_e$ flux gives insight on heavy-quark production
- Measure $\sigma (pp \rightarrow \nu_e X)$ (~15% uncertainty)
 - obtain energy response from simulation
 - unfold spectrum of observed events
 - assume SM cross-sections for CC interactions
- Derive charmed hadron yield (\sim 5% stat, \sim 35% syst.)
 - statistical subtraction of ν_e component from kaon decays (~20% syst.)
 - acceptance effect: exploit angular correlation between ν_e and parent charm

Neutrino physics: QCD

- measurement of the charmed hadrons can be translated into measurement of the corresponding open charm production
 - angular correlation between charmed hadron and parent charm
- charm production at LHC dominated by gluon-gluon scattering
- average lowest momentum fraction accessible at SND@LHC ${\sim}10^{-6}$
 - here, gluon PDF completely unknown, theory work ongoing on resummation
- constrain PDF with SND@LHC data
 - taking ratio of cross-sections at different energies/rapidities reduces scale uncertainty [JHEP 11 (2015) 009]
 - use LHCb measurement in η < 4.5, \sqrt{s} = 7, 13 TeVs

SND@LHC

[Nucl. Phys. B871 (2013) 1-20] [JHEP 03 (2016) 159]

Neutrino physics: $e/\mu/\tau$ comparison

- ν_e and ν_{τ} only come from charm decays in SND@LHC
 - ratio $N_{\nu_e+\bar{\nu}_e}/N_{\nu_{\tau}+\bar{\nu}_{\tau}}$ depends only on decay branching ratios and charm fractions
 - sensitive to cross-section ratio of the two ν flavours: *e*- τ LFU in neutrino sector (unc. \sim 30%)
- ν_{μ} neutrinos contamination by π/K decays flat above 600 GeV
 - ratio $N_{\nu_e + \bar{\nu}_e}/N_{\nu_\mu + \bar{\nu}_\mu}$ for $E_{\nu} > 600$ GeV probes $e_{-\mu}$ LFU (uncertainty ~15%) and is unaffected by charm fractions and branching ratio uncertainties

Consistency check

$$\frac{\sum_{i} \sigma_{NC}^{\nu_{i}} + \sigma_{NC}^{\bar{\nu}_{i}}}{\sum_{i} \sigma_{CC}^{\nu_{i}} + \sigma_{CC}^{\bar{\nu}_{i}}} = \frac{1}{2} \left\{ 1 - 2\sin^{2}\theta_{W} + \frac{20}{9}\sin^{4}\theta_{W} - \lambda \left(1 - 2\sin^{2}\theta_{W} \right) \sin^{2}\theta_{W} \right\}$$

- if dN/dE is the same for ν and $\bar{\nu}$, NC/CC cross section ratio equals ratio of observed events
- for deep inelastic scattering, it is a function of θ_W and of the properties of the target material
- can be measured with 10% precision and compared to SM predictions

Scattering signatures

122

- dense detector ideally suited to detect feebly interacting particles produced in pp collisions
- light dark matter scattering similar to NC neutrinos interactions: $\chi + N \rightarrow \chi + N$
 - sensitivity: excess of ${\sim}100$ events
 - consider $pp \rightarrow V + X$, $V \rightarrow \chi \chi$ where χ scatters on SND@LHC target
 - direct detection complementary to missing-energy approach (NA64)

• time-of-flight techniques ($\sigma_t = 200$ ps) sensitive to larger masses (~ 10 GeV for $E_{\chi} \sim 1$ TeV)

Early measurements (2022)

- 1. muon-induced background measurement with electronic detectors
 - muon rates and track topology
 - comparison with simulations
- **2.** study of neutrino interactions with electronic detectors only
- **3.** response of nuclear emulsions: 1/5 of target instrumented with emulsions to be extracted in July
 - evaluate background in the emulsion target
 - define/update the replacement frequency

Simulated muon passing through the muon system

Summary and plans

- SND@LHC installation on schedule
- data taking coming soon with LHC Run 3
- probe neutrinos in heavy flavour decays
 - cross-sections at uncharted energies
 - probe charm production
 - suitable for SM tests in the neutrino sector

- ongoing: installation of monitoring system
- upcoming: long commissioning runs
 - optimization of detector settings
 - measure background
- first stable beams & intensity ramp up: from mid-June!

What's next?

- advanced SND@LHC envisaged for HL-LHC: far + near detector
- far detector similar to current experiment + muon spectrometer
 - replace nuclear emulsions (possible technologies are under study)
 - charm production measurement and neutrino sector LFU tests at 1% precision

- near detector to overlap with LHCb pseudorapidity range
 - search suitable location in existing caverns
 - meant to reduce systematic uncertainties
 - perform cross section measurements

