

The most recent results from NA62

Francesca Bucci, INFN Sezione di Firenze on behalf of the NA62 Collaboration

La Thuile 2022 – Les Recontres de Physique de la Vallée d'Aoste 6 - 12 March 2022

Seeking new physics through Flavour

Flavour physics is a special laboratory to look for physics beyond the Standard Model (SM)

- Loops are sensitive to the presence of new physics
- In rare processes new interactions can give major contributions
- New interactions can have different symmetries with respect to the SM

Two strategies:

- Search for deviations with respect to SM predictions
 - → e.g. specific Flavour Changing Neutral Current (FCNC) processes
- Search for processes forbidden by (accidental) symmetries of the SM
 - \rightarrow e.g. Lepton Number (LN) and Lepton Flavour (LF) violating decays

Seeking new physics through kaon decays

Strange particles provided many building blocks in the construction of the SM Kaon physics continues to help building the SM

Recent NA62 results covered in this talk

FCNC:

- $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ \downarrow very clean theoretically \leftarrow the main reason of NA62
- $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ | looking for new physics beyond the branching ratio

LNV, LFV:

- $K^+ \rightarrow \pi^- e^+ e^+$ $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ new results
- $K^+ \rightarrow \pi^- \mu^+ e^+$
- $K^+ \rightarrow \pi^+ \mu^- e^+$

NA62 experiment @ CERN Super Proton Synchrotron

Fixed target experiment installed in the CERN North Area

400 GeV/c protons from SPS hitting a beryllium target

- Run1: 2016, 2017, 2018
- Run2: in progress, from 2021 till LS3 •

NA62 beam and detector

- Secondary hadron 75 GeV/c beam: 70% pions, 24% protons, 6% kaons
- 60 m long fiducial region, ~ 5 MHz K⁺ decay rate, vacuum ~ O(10⁻⁶) mbar

 \mathbf{P}_{π}

 $\mathbf{P}_{\mathbf{v}}$

 $\mathbf{P}_{\mathbf{v}}$

P_K

 $\theta_{\pi \mathbf{K}}$

The decay $\mathbf{K} \to \pi \nu \bar{\nu}$

- FCNC process with highest CKM suppression
- Exceptional SM precision
- Basically free from hadronic uncertainties

SM branching ratios: [arXiv:2109.11032] $K^+ \to \pi^+ \nu \bar{\nu} (\gamma) = (8.60 \pm 0.42) \times 10^{-11}$ $K_L \to \pi^0 \nu \bar{\nu} = (2.94 \pm 0.15) \times 10^{-11}$

$K \rightarrow \pi \nu \bar{\nu}$: an example of sensitivity to new physics

Correlations are model-dependent

- Models with MVF
- Z/Z' models with pure LH/RH couplings, Littlest Higgs with T parity
- Randall-Sundrum

La Thuile, 11/03/2022

Important to look at the global picture (K, D and B)

- New interactions responsible for LFUV coupling mainly to the third generation of left-handed fermions
- EFT with new interaction satisfying an approximate $U(2)_q \times U(2)_l$ flavour symmetry

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2016+2017 data

2016 + 2017 data $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 1.78 \times 10^{-10} (90\% CL)$ = 0.48^{+0.72}_{-0.48} × 10⁻¹⁰(68% CL)

Grossman-Nir limit: $BR(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 7.8 \times 10^{10} (90\% CL)$

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2016+2017+2018 data(RUN1)

[JHEP 06 (2021) 093]

Most precise measurement of the decay rate to date

La Thuile, 11/03/2022

 $N_{hka}^{exp} = 7.03_{-0.82}^{+1.05}$

History of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement

Implications of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ measurement and prospects

Part of the parameters space is already ruled out

Next target: reach at least $\times 3$ improved precision to match theoretical uncertainty $\mathcal{O}(10\%)$ by LS3

The dotted purple circle is the predicted precision of the high intensity kaon experiments of the future

La Thuile, 11/03/2022

 $K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Theory

Sensitive to new physics, LFU test together with electron channel

- FCNC decay mediated by the virtual photon exchange $K^+ \rightarrow \pi^+ \gamma^* \rightarrow \pi^+ \mu^+ \mu^-$
- Long-distance hadronic contributions
- Differential decay width expressed in term of the Dalitz variables $z = m_{\mu^+\mu^-}^2/M_K^2$ and $x = m_{\pi^+\mu^+}^2/M_K^2$ Nucl. Phys. B291 (1987) 692-719, Phys.Part. Nucl. Lett. 5 (2008) 76-84

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Analysis

- Analysis performed on NA62 2017+2018 data set
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ used as normalization decay
- $N_{selected signal} = 28011 (\sim 9 \times \text{more than NA48/2}), N_{expected bkg} = 12.5 \pm 1.7(stat.)12.5(syst.)$
- FF parameters measured by reweighting the MC z spectrum to best fit the data

 $m(\pi^+\pi^+\pi^-)$ after normalization selection

z spectrum of signal candidate events with MC reweighted to best fit the data

La Thuile, 11/03/2022

13

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Results (2017+2018 data set)

Model dependent

$BR(K^+ \to \pi^+ \mu^+ \mu^-) = (9.27 \pm 0.11) \times 10^{-8}$ $a = -0.592 \pm 0.015$ b = -0.699 + 0.058NA62 Preliminary NA62 Preliminary NA62 Preliminary PDG Average (2020) E787 (1997) E865, K_{πee} (1999) E865, K_{πee} (1999) 207 events 10300 events - statistical error only 10300 events - statistical error only E865 (2000) 430 events NA48/2, K_{πee} (2009) NA48/2, K_{πee} (2009) 7253 events 7253 events HyperCP (2002) 110 events NA48/2, K_{πuu} (2011) NA48/2, K_{πuu} (2011) NA48/2 (2011) 3120 events 3120 events 3120 events NA62, K $_{\!\pi\!\mathrm{u}\mathrm{u}}$ (2020) – this result NA62, K $_{\pi\mu\mu}$ (2020) – this result NA62 (2020) - this result 28011 events 28011 events 28011 events -0.9 -0.85 -0.8 -0.75 -0.7 -0.65 -0.6 -0.55 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 4 5 6 7 8 10 11 9 Form factor parameter a_{\perp} Form factor parameter b_{+} $B(K^+ \rightarrow \pi^+ \mu^+ \mu^-) \times 10^8$

Analysis performed on the full NA62 Run 1 data set Forward-backward asymmetry measured

- paper in preparation

Revised, more stringent trigger for di-muon and di-electron in 2021

La Thuile, 11/03/2022

LNV and LFV in kaon decays

- Lepton Number (L) and Lepton Flavor (L_e, L_u, L_τ) are accidentally conserved quantities within the SM
- Violation of these conservation laws is a clear indication of BSM physics
- Searches for LNV and LFV kaon decays are powerful probes of BSM theories at mass scales up to O(100 TeV)

Lepton number violation (LNV)

Seesaw mechanism provides a source of LNV through the exchange of Majorana neutrinos as in $0\nu\beta\beta$ decay

[JHEP 0905 (2009) 030]

Lepton flavour violation (LFV)

LFV processes can occur via the exchange of leptoquarks, of a Z'boson, or in SM extensions with light pseudoscalar bosons [JHEP 10 (2018) 148, Rev. Mod. Phys. 81, 1199 (2009), JHEP 01 (2020)158]

$K^+ \to \pi^- e^+ e^+ (LNV)$ [arXiv.2202.00331]

- Analysis based on the full NA62 Run1 data set
- $K^+ \rightarrow \pi^+ e^+ e^-$ used as normalization decay
- RICH-based e^+ identification used to suppress the dominant backgrounds from $K^+ \to \pi^+ \pi_D^0$ ($\pi_D^0 \to e^+ e^- \gamma$) and $K^+ \to \pi^+ e^+ e^-$ decays with double $\pi^+ \to e^+$ and $e^- \to \pi^-$ misidentification

$K^+ \to \pi^- \pi^0 e^+ e^+ (LNV)$ [arXiv.2202.00331]

- Analysis based on the full NA62 Run1 data set
- $K^+ \rightarrow \pi^+ e^+ e^-$ used as normalization decay
- π^0 is reconstructed by its prompt $\pi^0 \rightarrow \gamma \gamma$ decay

LNV selection: $m(\pi^{-}\pi^{0}e^{+}e^{+})$

Mode	Control region	Signal region
$K^+ \to \pi^+ \pi^0 \pi_D^0$	0.16 ± 0.01	0.019
$K^+ \to \pi^+ \pi^0_D \gamma^-$	0.06 ± 0.01	0.004
$K^+ \to \pi_D^0 e^{\bar{+}} \nu \gamma$	0.05 ± 0.02	_
$K^+ \to \pi^+ \pi^0 e^+ e^-$	0.01	0.001
Pileup	0.20 ± 0.20	0.020 ± 0.020
Total	0.48 ± 0.20	0.044 ± 0.020
Data	1	0

Expected bkg events: 0.044 ± 0.020 Observed signal cand events: 0 $BR(K^+ \rightarrow \pi^- \pi^0 e^+ e^+) < 8.5 \times 10^{-10}$ at 90% CL

First search for this mode

$K^+ \rightarrow \pi^- \mu^+ e^+$ LNV and $K^+ \rightarrow \pi^+ \mu^- e^+$ ($\pi^0 \rightarrow \mu^- e^+$) LFV

- Analysis based on the NA62 2017+2018 data set
- $K^+ \rightarrow \pi^+ \pi^- \pi^-$ used as normalization decay. K^+ decays in FV: $(1.07 \pm 0.20) \times 10^{12}$
- 3 charged tracks consistent with $\pi^{\mp}\mu^{\pm}e^{+}$ final states coming from K^{+} decay
- Invariant mass $m_{\pi\mu e}$ used to distinguish between signal and background ($\sigma_{m_{\pi\mu e}} = 1.4 \text{ MeV/c}^2$)
- To search for the decay chain $K^+ \to \pi^+ \pi^0 (\pi^0 \to \mu^- e^+)$ the reconstructed mass of μe pair required to be consistent with π^0 mass

Main background contributions arise from K^+ decays followed by:

• particle misidentification

 $\pi^{\pm} \Longrightarrow e^{\pm} (4-5) \times 10^{-3} \qquad e^{\pm} \Longrightarrow \pi^{\pm} (1-3) \times 10^{-2}$ $\pi^{\pm} \Longrightarrow \mu^{\pm} (2-3) \times 10^{-3} \qquad \mu^{\pm} \Longrightarrow \pi^{\pm} 1.5 \times 10^{-3}$

• $\pi^{\pm} \rightarrow l^{\pm} \nu_l \ (l = \mu, e)$ decays in flight

$K^+ \to \pi^- \mu^+ e^+ \text{LNV} \text{ and } K^+ \to \pi^+ \mu^- e^+ (\pi^0 \to \mu^- e^+) \text{ LFV}$

Expected bkg events: 1.07 ± 0.20

Observed $K^+ \rightarrow \pi^- \mu^+ e^+$ cand events: 0

Expected bkg events: 0.92 ± 0.20

Observed $K^+ \rightarrow \pi^+ \mu^- e^+$ cand events: 2

F. Bucci

NA62 LNV and LFV Results

	Previous UL @ 90% CL	NA62 UL @ 90%CL		
$K^+ o \pi^- \mu^+ \mu^+$	8.6×10^{-11}	4.2×10^{-11}	2017 data \rightarrow improved by factor 2 Phys. Lett. B 797 (2019) 134794	
$K^+ \rightarrow \pi^- e^+ e^+$	6.4×10^{-10}	5.3×10^{-11}	Run1 data \rightarrow improved by factor 12	
$K^+ \to \pi^- \pi^0 e^+ e^+$	no limit	8.5×10^{-10}	Run1 data	
$K^+ o \pi^- \mu^+ e^+$	5.0×10^{-10}	4.2×10^{-11}	2017+2018 data \rightarrow improved by factor 12	
$K^+ o \pi^+ \mu^- e^+$	5.2×10^{-10}	6.6×10^{-11}	2017+2018 data \rightarrow improved by factor 8 PRL 127 131802 (2021)	
$\pi^0 ightarrow \mu^- e^+$	3.4×10^{-9}	3.2×10^{-10}	2017+2018 data \rightarrow improved by factor 13	
$K^+ ightarrow \pi^+ \mu^+ e^-$	1.3×10^{-11}	-	sensitivity similar to previous search	
$\pi^0 \rightarrow \mu^+ e^-$	3.8×10^{-10}	-	sensitivity similar to previous search	
$K^+ \rightarrow \mu^- \nu e^+ e^+$	2.1×10^{-8}	-	Ongoing analysis on 2017 data: SES $\sim 1 imes 10^{-10}$	
$K^+ \rightarrow e^- \nu \mu^+ \mu^+$	no limit		Ongoing analysis on 2017 data: SES $\sim 5 imes 10^{-11}$	

~ 1 order of magnitude improvements compared to previous searches

Conclusions

- Kaon rare decays are an excellent portal to explore physics beyond the Standard Model
- NA62 Run1 data set collected in 2016-2018 contains ~ $6 \times 10^{12} K^+$ decays in flight
- A strong kaon physics program is going on
- NA62 data taking was resumed in 2021 and will continue till LS3 at higher beam intensity, with updated detectors and trigger lines
- The short term goal is to have $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ measured to 10% by LS3
- In parallel, compelling measurements: FCNC decays other than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$, LFV, LNV, Exotics, HNL,...

Spare

NA62: Decay in flight

K⁺ main (background) decays

Decay channel	Branching ratio	
K^+ → μ^+ ν ($K_{\mu 2}$)	$(63.56 \pm 0.11) \cdot 10^{-2}$	
$K^{+} {\longrightarrow} \pi^{+} \pi^{0} \left(K_{2\pi}\right)$	$(20.67 \pm 0.08) \cdot 10^{-2}$	
$K^+ \rightarrow \pi^+ \pi^+ \pi^- (K_{3\pi})$	$(5.583 \pm 0.024) \cdot 10^{-2}$	
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu (K_{e4})$	(4.247 \pm 0.024) \cdot 10 ⁻⁵	

Kinematic cuts to define signal regions R1 and R2

Track extrapolation at collimator in enriched sample of upstream events Red boxes: collimator coverage

Both samples normalized to 1

Vertex

F. Bucci

• Track slope

NA62 2018 Data: Signal efficiency

Sizeable improvements in 2018 data analysis (hardware and software)

	2017	2018-OLDCOL	2018-NEWCOL
Ν _κ	$(1.5 \pm 0.2) \cdot 10^{12}$	$(0.8 \pm 0.1) \cdot 10^{12}$	$(1.9 \pm 0.2) \cdot 10^{12}$
Α _{πνν}	(3.0±0.3)%	$(4.0 \pm 0.4)\%$	$(6.4\pm0.6)\%$
ε _{RV}	0.64 ± 0.01	0.66 ± 0.01	$\textbf{0.66} \pm \textbf{0.01}$
ε _{trig}	0.87 ± 0.03	0.88 ± 0.04	0.88 ± 0.04
N ^{exp} _{πνν} (SM)	$\textbf{2.16} \pm \textbf{0.29}$	1.56 ± 0.21	6.02 ± 0.82
B/S	~ 0.7	~ 0.7	~ 0.7

Increase of signal efficiency with the same B/S ratio

KOTO: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Results

KOTO: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Prospects

2021-2022 shutdown:

- J-PARK main ring power supply upgrade Beam power 64kW → 80-100 kW
- KOTO DAQ upgrade event throughput × 4

2022-2025:

KOTO will collect \times 11 more data Projected SES $O(10^{-11})$ by 2026

NA62 in dump mode

