

Neutrino constraints on new physics in $(g - 2)_{\mu}$

Admir Greljo

09.03.2022, La Thuile

New Physics in $(g - 2)_{\mu}$?

<u>A word of caution</u>: More EXP/TH work is needed to prove NP is behind these effects.

New Physics in $(g - 2)_{\mu}$?

<u>A word of caution</u>: More EXP/TH work is needed to prove NP is behind these effects.

New Physics in $(g - 2)_{\mu}$?

<u>A word of caution</u>: More EXP/TH work is needed to prove NP is behind these effects.

Watch out LFV!

$$\frac{Br(\mu \to e\gamma)}{3 \times 10^{-13}} \approx \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{12}}{10^{-5}}\right)^2$$
$$\frac{Br(\tau \to \mu\gamma)}{4 \times 10^{-8}} \approx \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{23}}{10^{-2}}\right)^2$$

New Physics in $(g - 2)_{\mu}$?

<u>A word of caution</u>: More EXP/TH work is needed to prove NP is behind these effects.

Watch out LFV!

$$\frac{Br(\mu \to e\gamma)}{3 \times 10^{-13}} \approx \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{12}}{10^{-5}}\right)^2$$
$$\frac{Br(\tau \to \mu\gamma)}{4 \times 10^{-8}} \approx \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^2 \left(\frac{\theta_{23}}{10^{-2}}\right)^2$$

Nearly exact $U(1)_e \times U(1)_\mu \times U(1)_{\tau}$?

Flavour alignment of New Physics [Isidori, Pages, Wilsch; 2111.13724]

Gauged lepton flavor

1. Extend the SM gauge group with the lepton flavour non-universal $U(1)_X$.

Gauged U(1)_X $\sim \sim e^{\mu} \tau$

• Natural framework for LFUV without LFV. Connection with B-anomalies.

Gauged lepton flavor

1. Extend the SM gauge group with the lepton flavour non-universal $U(1)_X$.

Gauged U(1)_X $\sim \sim e^{\mu} \tau$

• Natural framework for LFUV without LFV. Connection with B-anomalies.

7

2. Charge a leptoquark under $U(1)_X$.

Hambye, Heeck; 1712.04871 Davighi, Kirk, Nardecchia, 2007.15016 AG, Stangl, Thomsen, 2103.13991 AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518 Davighi, AG, Thomsen; 2202.05275

 Gauge symmetry selection rules:

 $q\mu S$

 $qeS, q\tau S, qqS^{\dagger}$ $qqS^{\dagger}H, qqS^{\dagger}\phi$

Gauged lepton flavor

1. Extend the SM gauge group with the lepton flavour non-universal $U(1)_X$.

Gauged U(1)_X $\sim \sim e^{\mu} \tau$

• Natural framework for LFUV without LFV. Connection with B-anomalies.

2. Charge a leptoquark under $U(1)_X$.

Hambye, Heeck; 1712.04871 Davighi, Kirk, Nardecchia, 2007.15016 AG, Stangl, Thomsen, 2103.13991 AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518 Davighi, AG, Thomsen; 2202.05275

Gauge symmetry selection rules:

The accidental symmetry of $\mathscr{L}^{(4)}$ is $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$ and the LQ charge is (-1/3, 0, -1, 0)

Chiral anomaly-free **muoquark** models are classified in (backup): AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

A class of $U(1)_X$ models

Charges

 $X = 3m(B - L) - n(2L_{\mu} - L_{e} - L_{\tau}), \quad \gcd(m, n) = 1$

Davighi, AG, Thomsen; 2202.05275 a generalisation of: AG, Stangl, Thomsen; 2103.13991

A class of $U(1)_X$ models

Charges

 $X = 3m(B - L) - n(2L_{\mu} - L_{e} - L_{\tau}), \quad \gcd(m, n) = 1$

Davighi, AG, Thomsen; 2202.05275 a generalisation of: AG, Stangl, Thomsen; 2103.13991

Field content

	Fields	$\mathrm{U}(1)_X$
Quarks	q_i,u_i,d_i	m
Electrons and taus	$\ell_{1,3}, e_{1,3}, \nu_{1,3}$	n-3m
Muons	ℓ_2,e_2,ν_2	$\left -2n-3m\right $
Higgs	H	0
Leptoquarks	S_3, S_1	2m+2n

A class of $U(1)_X$ models

Charges

$$X = 3m(B - L) - n(2L_{\mu} - L_e - L_{\tau}), \quad \gcd(m, n) = 1$$

Davighi, AG, Thomsen; 2202.05275 a generalisation of: AG, Stangl, Thomsen; 2103.13991

Field content

	Fields	$\mathrm{U}(1)_X$
Quarks	q_i,u_i,d_i	m
Electrons and taus	$\ell_{1,3}, e_{1,3}, \nu_{1,3}$	n-3m
Muons	ℓ_2,e_2,ν_2	-2n - 3m
Higgs	Н	0
Leptoquarks	S_3, S_1	2m+2n

A good fit to both $(g-2)_{\mu}$ and $b \rightarrow s\mu^{+}\mu^{-}$ for $m_{LQ} \sim \text{TeV}(\text{see backup})$

11

- LFV is observed in nature! The PMNS is full of $\mathcal{O}(1)$ elements.
- The correct neutrino masses and mixings dictate the $U(1)_X$ breaking!

• We introduce two $U(1)_X$ -breaking scalar fields:

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

• We introduce two $U(1)_X$ -breaking scalar fields:

$\phi_{e au}$	6m-2n
ϕ_{μ}	6m+n

- This is enough to accommodate for:
 - Neutrino oscillations data,
 - The Planck limit on the sum of neutrino masses,
 - The absence of neutrinoless double beta decay.
 - See e.g. [Asai 1907.04042]

$U(1)_X$ breaking at the high scale?

+ the high-scale leptogenesis

In the $U(1)_X$ broken phase one can *naively* write renormalisable terms qqS^* and $q_i \ell_j S$ that violate $U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$

- What about the TeV scale LQs?
- Is there proton decay? cLFV?

• The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a dense* neutrino Majorana mass matrix.

- The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a dense* neutrino Majorana mass matrix.
- Because these charges are non-trivial multiples of the fundamental unit of $U(1)_X$ charge, there remains an unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR, which in our case remarkably protects proton decay.

- The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a* dense neutrino Majorana mass matrix.
- Because these charges are non-trivial multiples of the fundamental unit of $U(1)_X$ charge, there remains an unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR, which in our case remarkably protects proton decay.

$$k = \gcd([\phi_{e\tau}]_X, \, [\phi_{\mu}]_X) \qquad \left[e^{i\frac{2\pi}{k}[\phi]_X}\phi = \phi\right] \qquad \Gamma \cong \mathbb{Z}_k$$

• The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets

- The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a dense* neutrino Majorana mass matrix.
- Because these charges are non-trivial multiples of the fundamental unit of $U(1)_X$ charge, there remains an unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR, which in our case remarkably protects proton decay.

$$k = \gcd([\phi_{e\tau}]_X, \ [\phi_{\mu}]_X) \qquad \left[e^{i\frac{2\pi}{k}[\phi]_X}\phi = \phi\right] \qquad \Gamma \cong \mathbb{Z}_k$$

• The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets

• The diquark operators qqS^* are banned for:

Davighi, AG, Thomsen; 2202.05275

$$(m, n) = (3a + r, 9b + 3r), \text{ for } r \in \{1, 2\},$$

 $(a, b) \in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1.$

- The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a dense* neutrino Majorana mass matrix.
- Because these charges are non-trivial multiples of the fundamental unit of $U(1)_X$ charge, there remains an unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR, which in our case remarkably protects proton decay.

$$k = \gcd([\phi_{e\tau}]_X, \ [\phi_{\mu}]_X) \qquad \left[e^{i\frac{2\pi}{k}[\phi]_X}\phi = \phi\right] \qquad \Gamma \cong \mathbb{Z}_k$$

• The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets

• The diquark operators qqS^* are banned for:

Davighi, AG, Thomsen; 2202.05275

$$(m, n) = (3a + r, 9b + 3r), \text{ for } r \in \{1, 2\},$$

 $(a, b) \in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1.$

 As both m and n are necessarily non-zero, it is not enough to consider only B – L or only the lepton-flavoured factor; both are required!

- The $U(1)_X$ gauge symmetry is broken by the VEVs of $\phi_{e\tau}$ and ϕ_{μ} , whose charges are uniquely fixed so as to produce *a dense* neutrino Majorana mass matrix.
- Because these charges are non-trivial multiples of the fundamental unit of $U(1)_X$ charge, there remains an unbroken discrete subgroup $\Gamma \subset U(1)_X$ acting on matter in the IR, which in our case remarkably protects proton decay.

$$k = \gcd([\phi_{e\tau}]_X, \ [\phi_{\mu}]_X) \qquad \left[e^{i\frac{2\pi}{k}[\phi]_X}\phi = \phi\right] \qquad \Gamma \cong \mathbb{Z}_k$$

• The scalars $\phi_{e au}$ and ϕ_{μ} are Γ singlets

• The diquark operators qqS^* are banned for:

$$\begin{aligned} \text{Davighi, AG, Thomsen; 2202.05275} \\ (m, n) &= (3a + r, 9b + 3r), \quad \text{for} \quad r \in \{1, 2\}, \\ (a, b) &\in \mathbb{Z}^2, \text{ and } \gcd(3a + r, b - a) = 1. \end{aligned} \qquad k = 9 \gcd(2, b + r) \\ \Gamma &\cong \begin{cases} \mathbb{Z}_9, & \text{for } b + r \in 2\mathbb{Z} + 1 \\ \mathbb{Z}_{18}, & \text{for } b + r \in 2\mathbb{Z} \end{cases} \end{aligned}$$

 As both m and n are necessarily non-zero, it is not enough to consider only B – L or only the lepton-flavoured factor; both are required!

Charges

$b+r \pmod{2}$	Γ	ℓ	q	S	$qS\ell$	qS^*q
0	\mathbb{Z}_{18}	9(b-a)	3a+r	6a + 8r	0	12r
1	\mathbb{Z}_9	0	3a + r	6a + 8r	0	3r

Tabele I: Charges under the remnant discrete symmetry Γ

Charges

$b+r \pmod{2}$	Γ	ℓ	q	S	$qS\ell$	qS^*q
0	\mathbb{Z}_{18}	9(b-a)	3a+r	6a + 8r	0	12r
1	\mathbb{Z}_9	0	3a + r	6a + 8r	0	3r

Tabele 1: Charges under the remnant discrete symmetry Γ

- Stable proton
- ullet The protection of baryon number by $oldsymbol{\Gamma}$ goes beyond just banning the diquark operators.

$$\Delta B = 0 \pmod{3}$$

Exact proton stability to all orders in the SMEFT!

• Other baryon number-violating processes are in principle possible through $\Delta B = 3$ operators allowing for sphalerons.

Accidental lepton flavor conservation

• The muon selection rule, unlike protection of baryon number, is not enshrined by Γ -invariance in the IR (otherwise no PMNS).

Accidental lepton flavor conservation

- The muon selection rule, unlike protection of baryon number, is not enshrined by Γ -invariance in the IR (otherwise no PMNS).
- Higher-order operators coupling the leptoquarks to electrons and taus are allowed in the $U(1)_X$ -invariant effective theory, which could come from even heavier dynamics integrated out at a scale $\Lambda > v_X$.

$$\frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* q S_{1/3} \ell_{1,3} \qquad \frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* u S_1 e_{1,3}$$

Accidental lepton flavor conservation

- The muon selection rule, unlike protection of baryon number, is not enshrined by Γ -invariance in the IR (otherwise no PMNS).
- Higher-order operators coupling the leptoquarks to electrons and taus are allowed in the $U(1)_X$ -invariant effective theory, which could come from even heavier dynamics integrated out at a scale $\Lambda > v_X$.

$$\frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* \, q S_{1/3} \ell_{1,3} \qquad \frac{1}{\Lambda^2} \phi_{e\tau} \phi_{\mu}^* \, u S_1 e_{1,3}$$

• The limits on $\mu \rightarrow e\gamma$ suggest $v_X/\Lambda \lesssim 0.01$. A modest scale separation is sufficient to suppress LFV processes to a level compatible with current bounds.

DEEPER INTO THE UV: UNIFICATION

Tentative gauge-flavour unification scenario.

Conclusions

- Lepton flavour non-universal $U(1)_X$ extensions of the SM provide an elegant framework to address the flavour anomalies explaining, in particular, why the SM accidental symmetries work so well.
- A novel mechanism to restrict TeV-scale leptoquark interactions and render the proton exactly stable to all orders in the effective field theory expansion while explaining the neutrino masses and mixings.
- The $U(1)_X$ can emerge from a gauge-flavour unified theory at even higher energies.

 $U(1)_{B-3L_u}$ example

- EW and flavor opservables, LFV, LFU, magnetic moments, neutral meson mixing, semileptonic and rare B, D, K decays, etc.

Hiller, Schmaltz, 1408.1627, Dorsner, Fajfer, AG, Kamenik, Kosnik; 1603.04993, Buttazzo, AG, Isidori, Marzocca; 1706.07808, Gherardi, Marzocca, Venturini; 2008.09548 + many more

The $U(1)_X$ at las

- $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$ gauge group
- Chiral fermions:

$$\begin{array}{ll} Q_i \sim ({\bf 3},{\bf 2},\frac{1}{6},X_{Q_i}), & U_i \sim ({\bf 3},{\bf 1},\frac{2}{3},X_{U_i}), & D_i \sim ({\bf 3},{\bf 1},-\frac{1}{3},X_{D_i}), \\ L_i \sim ({\bf 1},{\bf 2},-\frac{1}{2},X_{L_i}), & E_i \sim ({\bf 1},{\bf 1},-1,X_{E_i}), & N_i \sim ({\bf 1},{\bf 1},0,X_{N_i}) \\ \end{array}$$
Left-handed
Right-handed

- The symmetry breaking scalar fields: $H = (\mathbf{1}, \mathbf{2}, \frac{1}{2}, X_H), \qquad \phi = (\mathbf{1}, \mathbf{1}, 0, X_\phi)$
- Without loss of generality $X_H = 0$

* By field redefinitions, shifting $X_f \rightarrow X_f - aY_f$ for all fields, gives an equivalent theory.

 $1, 0, X_{N_i}$

The $U(1)_X$ at las

• $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$ gauge group

 $Q_i \sim (\mathbf{3}, \mathbf{2}, \frac{1}{6}, X_{Q_i}), \qquad U_i \sim (\mathbf{3}, \mathbf{1}, \frac{2}{3}, X_{U_i}), \qquad D_i \sim (\mathbf{3}, \mathbf{1}, -\frac{1}{3}, X_{D_i}), \\ L_i \sim (\mathbf{1}, \mathbf{2}, -\frac{1}{2}, X_{L_i}), \qquad E_i \sim (\mathbf{1}, \mathbf{1}, -1, X_{E_i}), \qquad N_i \sim (\mathbf{1}, \mathbf{1}, 0, X_{N_i})$

Anomaly cancelation conditions: $SU(3)_C^2 \times U(1)_X$: $\sum_{i=1}^3 (2X_{Q_i} - X_{U_i} - X_{D_i}) = 0$, $SU(2)_L^2 \times U(1)_X : \sum_{i=1}^3 (3X_{Q_i} + X_{L_i}) = 0$, $U(1)_Y^2 \times U(1)_X: \quad \sum_{i=1} (X_{Q_i} + 3X_{L_i} - 8X_{U_i} - 2X_{D_i} - 6X_{E_i}) = 0 ,$ Gravity² × U(1)_X : $\sum_{i=1} (6X_{Q_i} + 2X_{L_i} - 3X_{U_i} - 3X_{D_i} - X_{E_i} - X_{N_i}) = 0$, $U(1)_Y \times U(1)_X^2: \quad \sum_{i=1}^{1} (X_{Q_i}^2 - X_{L_i}^2 - 2X_{U_i}^2 + X_{D_i}^2 + X_{E_i}^2) = 0 ,$ $U(1)_X^3: \sum_{i=1}^{5} (6X_{Q_i}^3 + 2X_{L_i}^3 - 3X_{U_i}^3 - 3X_{D_i}^3 - X_{E_i}^3 - X_{N_i}^3) = 0.$

• Unification => Rational charges. Rescale g_X => Integer charges.

 $-10 \le X_{F_i} \le 10 => 21'546'920$ inequivalent solutions (i.e. up to flavor permutation, etc) *to be explored Allanach, Davighi, Melville; 1812.04602

The $U(1)_X$ at las

Quark flavor universal

•
$$Y^{u,d}$$
 are allowed => $X_{Q_i} = X_{U_j} = X_{D_k}$ [
($X_H = 0$)

$$-10 \le X_{F_i} \le 10$$

[276 inequivalent solutions]

• Muoquark requirement eg. $S_3 LQ: X_{L_2} \neq \{X_{L_{1,3}}, -3X_q\}$ [273 inequivalent solutions]

 Y^e allowed => vector category : $X_{L_i} = X_{E_i}$ [252 inequivalent solutions] chiral category : the rest. [21 inequivalent solutions]

The $U(1)_X$ atlas

Third-family-quark

• The "2+1" charge assignment

$$X_{Q_i} = X_{U_j} = X_{D_k} \equiv X_{q_{12}}$$
 for all $i, j, k = 1, 2$, and
 $X_{Q_3} = X_{U_3} = X_{D_3} \equiv X_{q_3}$. $(X_H = 0)$

• The CKM elements
$$(V_{td}, V_{ts})$$
 at dim-5:
 $\mathcal{L} \supset \frac{x_i^u}{\Lambda} \overline{Q}_i \tilde{H} \phi U_3 + \frac{x_i^d}{\Lambda} \overline{Q}_i H \phi D_3 + \text{H.c.}$

- The ACC conditions are satisfied provided $$^{*\rm Th}_{\rm solution}$$ $2X_{q_{12}}+X_{q_3}=3X_q$

*The quark flavor-universal solutions can immediately be extended to the 2 + 1 case.

• The muoquark conditions slightly change: $X_{q_{12}} = 0$ eg. S_3 LQ: $X_{L_2} \neq \{X_{L_{1,3}}, X_{L_{1,3}} - X_{q_3}, -X_{q_3}, -2X_{q_3}, -3X_{q_3}\}$ [171 inequivalent sol.] $-10 \le X_{F_i} \le 10$