

Flavour phenomenology of axion-like particles

Sophie Renner University of Glasgow

Based on work with M. Bauer, M. Neubert, M. Schnubel and A. Thamm 1908.00008, 2012.12272, 2102.13112, 2110.10698

La Thuile 2022

Why axion like particles (ALPs)?

MODEL-BUILDING MOTIVATIONS:

Any dynamics with a spontaneously broken approximate global symmetry will produce light spinless particles

Many motivated explicit models: e.g. QCD axion, dark sector models, flavon models, composite Higgs models,

Why ALPs? Motivations II

MODEL-INDEPENDENT MOTIVATIONS:

One or more light ($m \leq v$) BSM particles?

ALP effective Lagrangian

Don't need to know the details of the UV physics to study the ALP

Then the parameter space of the model depends on $m_a, f, (\mathbf{c}_F), c_{XX}$

ALP pheno at a glance

All ALP interactions come with a factor of 1/f, \implies small couplings, long lifetimes

ALP pheno at a glance

All ALP interactions come with a factor of 1/f, \implies small couplings, long lifetimes

C/f1 GeV⁻¹-ŶΥ LSW leptons hadrons Stars/supernovae γZ Beam dumps 1 TeV^{-1} Meson/lepton decays h/Z decay Colliders 10^{-3} TeV^{-1} ► M 1 eV100 GeV 1 MeV 1 GeV

Production modes depend on mass

ALP pheno at a glance

Where can measurements of flavour-changing processes play a role?

From the EFT to observables

ALP couplings determined by physics at Λ_{UV}

To make connection with observables, need to run and match to scale of measurement

Flavour pheno: focus on ALPs in MeV-GeV mass range (below an MeV already strongly constrained by astro/cosmology)

Choi, Im, Park, Yun, 1708.00021 Chala, Guedes, Ramos, Santiago 2012.09017 Bauer, Neubert, SR, Schnubel, Thamm, 2012.12272

Flavour effects

Largest effects for coupling to tops

ALPs in quark flavour processes

Long lived ALP: missing energy, monoenergetic final state meson/photon

Decaying ALP: narrow resonance in decay products

RG and matching calculations allow:

> calculate all observables in terms of fundamental lagrangian coeffs at high scale > plot other constraints & regions of interest in same parameter space

Simplified scenario: coupling to SU(2) gauge bosons

Comparison with photonic constraints

What about leptons?

ALPs may also have lepton flavour violating (LFV) couplings

SM is lepton flavour conserving \implies unlike quark case, LFV cannot be created from RG alone

But there can still be *connections* between LFV and flavour conserving processes

e.g.

LFV ALP can explain $(g-2)_{\mu}$ if $m_a > m_{\tau}$ and flavour *conserving* couplings are not too large

See Julie Pagès's talk for connections between (g-2) and LFV in models of heavy new physics

Summary

Down-type quark flavour changing effects inevitably generated within ALP EFTs by running and matching

Main signature: ALPs with mass below m_b can be produced directly in meson decays

Often best place to look for ALPs in MeV-GeV mass range (between astrophysics and collider)

Backup

Higgs decays to ALPs

Bauer, Neubert & Thamm, 1708.00443

Limits depend strongly on decay modes of the ALP e.g. for $h \rightarrow Za$ can apply limits from a dedicated $h \rightarrow \gamma\gamma + \gamma\gamma$ search

From FIPS2020 talk by Maria Cepeda: Almost model independent BSM width < 0.34 Invisible width < 19%

$$\Gamma_H = \frac{\Gamma_H^{SM} \cdot \kappa_H^2}{1 - BR_{BSM}}$$

Warning: no direct measurement of the width. To probe the BSM BR an additional constrain needs to be imposed. Usually, κ_{W,Z} ≤ 1.

Simplified scenario: coupling to LH quark doublet

1 loop RG above EW scale

RGEs for the lepton couplings are highly analogous!

$(g-2)_{\ell}$ from an ALP: no flavour violation

Lagrangian

$$\mathcal{L}_{\text{eff}} = c_{\ell_i \ell_i} \frac{\partial^{\mu} a}{f} \bar{\ell}_i \gamma_{\mu} \gamma_5 \ell_i + c_{\gamma\gamma} \frac{\alpha}{4\pi} \frac{a}{f} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

f=ALP decay constant, related to BSM scale ($\Lambda = 4\pi f$)

There are loop contributions to the photon coupling from light leptons: Bauer, Neubert, Thamm JHEP 12 (2017) 044

$$\begin{split} \underbrace{\ell}_{i} & \underbrace{a}_{i} & \underbrace{\ell}_{i} & \underbrace{\ell}_{i} & \underbrace{\ell}_{i} & \underbrace{\ell}_{i} & \underbrace{\ell}_{i} & \underbrace{c}_{i} & \underbrace{c}_{i$$

$$h_{1,2}(x_i) > 0$$

Loop functions are positive