

LUXE: A NEW EXPERIMENT TO STUDY **NON-PERTURBATIVE QED** LOUIS HELARY (DESY) ON BEHALF OF LUXE

LES RENCONTRES DE PHYSIQUE DE LA VALLÉE D'AOSTE — MARCH 6^{TH} - $12^{TH} 2022 - LA THUILE$ HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

INTRODUCTION: QED, VACUUM AND STRONG FIELD QED

- QED: one of the most well-tested physics theory!
 - Calculation in QED based on perturbative theory of α_{EM} .
 - Prediction electron (g-2) precision better than 1 part in a trillion!
- Vacuum:
 - Virtual particles that can be charged and couple to fields.
 - Quantum fields: average is zero, but variance is not!
 - Physical particle travel in vacuum affected by interactions with these.
- If one apply a strong electromagnetic field on a vacuum:
 - $W_{\text{field}} < 2 m_{\text{e}}$

- QED becomes non perturbative above Schwinger-limit → Strong field QED (SFQED)!
- Experimental consequences:
 - Field-induced ("Breit-Wheeler") Pair Creation
 - Modified Compton Spectrum.
- Non-perturbative and SFQED never been reached in a clean environment, accessible by LUXE!
 - Experimentally reached by colliding highly boosted electrons with high-intensity laser!

Vacuum

$$\xi = \frac{e \varepsilon_L}{m_e \omega_L c} \propto \sqrt{I_{Laser}} \qquad \chi \approx \gamma \frac{\varepsilon_L}{\varepsilon_{crit}} \propto \sqrt{I_{Laser}} E_{beam}$$

$$\begin{split} \xi \ll 1 &: R_{e^+} \propto \xi^{2n} \propto I^n \\ \xi \gg 1 &: R_{e^+} \propto \chi_{\gamma} \exp\left(-\frac{8}{3\chi_{\gamma}}\right)^n \end{split}$$

Predictions:

Perturbative regime, rate follows power law Non-perturbative regime, departure from power law (valid for low X values)

- Historically SFQED studied first in 1990's at SLAC E144 (experiment)
 - 1TW laser with I_{Laser}=10¹⁸ W/cm²
 - e- beam: 46.6 GeV
 - reached $\xi < 0.4$, $\chi \le 0.25$
 - observed multi-photon interaction: $e^- + n\gamma_L \rightarrow e^- e^+ e^-$ process
 - observed start of the ξ^{2n} power law, but not departure
- Nowadays multiple experiments proposed worldwide to observe SFQED:
 - Accelerator based: SLAC-E320 (US), LUXE (DE)
 - Laser plasma wakefield accelerator: Astra Gemini (UK), ELI-NP (RO)
 - Others: crystal based experiment, heavy ions...
- Luxe allow to measure with precision large part of ξ vs X phase space.
 - Observation of non perturbative regime in clean vacuum environment.
 - Only experiment proposed to directly explore photon-laser interactions.

Main Luxe scientific goals:

- Observe and measure in detail SFQED:
 - Measure electron rate as a function of laser intensity.
 - Measure Compton edges.
- Study BSM physics.

, 3μı	2
/	
IP -	V.
ni	

EUROPEAN XFEL

European XFEL:

- Running since 2017.
- Provide X-ray photons to 6 experiments.
 - Electron through undulator:
 - SASE (self-amplified spontaneous emission).
- Linear electron accelerator.
 - 2700 electron bunches at 10 Hz.
 - Aim to run at 16.5 GeV with 1.5e9 e-/bunch.
- Experiment will be located XS1 shaft in Orsdorfer Born.
 - Built for XFEL extension (beyond 2030).
- Experiment will have no impact on photon science,
 - Only use 1 of the 2700 bunches.

LUXE IN SITU

LASER

- Chirped Pulse Amplification (CPA) technique
- Ti:Sa laser with 800 nm wavelength (E=1.55 eV).
- Two phases:
 - In phase 0 uses JETI40 (Jena custom 40 TW laser).
 - In phase I will use commercial 350 TW laser.
- Laser parameters:
 - Repetition rate: 1Hz.
 - Pulse length 30 fs
- Laser characterisation quantities: energy, pulse length, spot size
 - $\leq 5\%$ uncertainty on Laser intensity, 1% shot-to-shot uncertainty

Parameter	Phase 0	Phase 0	F
Laser power	40 TW		
Laser energy after compression [J]	1.2		
Percentage of laser in focus [%]	50		
Laser focal spot size w ₀ [µm]	>8	>3	
Peak intensity [10 ¹⁹ W/cm2]	1.9	13.3	
Peak intensity parameter ξ	3.0	7.9	
Peak quantum parameter X E _{beam} =16.5 GeV	0.56	1.5	

RATES PER BUNCH CROSSING

- Electron-laser:
- Gamma-laser:

WHAT DO WE WANT TO MEASURE?

- Measure number of electrons per laser shot and Compton edges position.
 - Data measurements allow to discriminate theory!

10

BSM PHYSICS?

- Explore sensibility to BSM theories.
 - Axion-like particles (ALPs) produced in dump.
 - New neutral particles produced at IP.
 - Milli-charged particles

• For ALPs:

- sensitive to masses m(a)~100 MeV.
- decay to photons after some lifetime τ .
- Place detector behind dump.
- Could use calorimeter with good pointing resolution to constrain decay point.

- First sensitivity show very competitive results!
 - After just 1 year of data.

	CDR released in 2021			Y1			
				Q1	Q2	Q2	Q4
	 Now working toward TDR for 2022. 	Beamline	Finalize design				
			Prepare installation				
			Infrastructure installation				
			Beamline installation				
			Commission beamline				
		Laser	Clean room installation				
			Finalize design				
			install diagnostics				
			JETI 40 installation				
			JETI40 & diag. commission				
Experiment shoul a decade (design	Experiment should extend over		350 TW laser installation				
	Experiment should externa over		350 TW laser commission				
	a decade (design to end)	Detectors	Finalize design & prototyping				
			Construction & indiv. testing				
	 XFEL to reclaim tunnel for 		Combined testing				
extens the fut			Install & commission				
	extension of facility in		upgrades installation (tbc)				
	tha futura	Commission					
		Data taking	phase-0 e-laser/γ-laser				
			phase-I e-laser/γ-laser				

• In parallel of review continue detector R&D, and experiment planification.

• Plan to perform multiple test-beam campaign in the future.

12

- The LUXE experiment will allow to measure QED in uncharted regime! • Might expect some surprises there!
- Synergy experiment between particle physics and Laser physics!
 - 10^{-5} to 10^{9} per laser shot.
 - Innovative development for Laser control system, and Laser diagnostics underway.

• LUXE CDR is now out, working on the TDR for 2022! Still lot of works to do before the experiment can be running.

• Experiment planing to function on established technology to cope with challenging rate to measure!

THANK YOU FOR YOUR ATTENTION!

Conceptual Design Report for the LUXE Experiment

H. Abramowicz¹, U. Acosta^{2,3}, M. Altarelli⁴, R. Aßmann⁵, Z. Bai^{6,7}, T. Behnke⁵, Y. Benhammou¹, T. Blackburn⁸, S. Boogert⁹, O. Borysov⁵, M. Borysova^{5,10}, R. Brinkmann⁵, M. Bruschi¹¹, F. Burkart⁵, K. Büßer⁵, N. Cavanagh¹², O. Davidi⁶, W. Decking⁵, U. Dosselli¹³, N. Elkina³, A. Fedotov¹⁴, M. Firlej¹⁵, T. Fiutowski¹⁵, K. Fleck¹², M. Gostkin¹⁶, C. Grojean^{*5}, J. Hallford^{5,17}, H. Harsh^{18,19}, A. Hartin¹⁷, B. Heinemann^{†5,20}, T. Heinzl²¹, L. Helary⁵, M. Hoffmann^{5,20}, S. Huang¹, X. Huang^{5,15,20}, M. Idzik¹⁵, A. Ilderton²¹, R. Jacobs⁵, B. Kämpfer^{2,3}, B. King²¹, H. Lahno¹⁰, A. Levanon¹, A. Levy¹, I. Levy²², J. List⁵, W. Lohmann^{‡5}, T. Ma²³, A.J. Macleod²¹, V. Malka⁶, F. Meloni⁵, A. Mironov¹⁴, M. Morandin¹³, J. Moron¹⁵, E. Negodin⁵, G. Perez⁶, I. Pomerantz¹, R.Pöschl²⁴, R. Prasad⁵, F. Quéré²⁵, A. Ringwald⁵, C. Rödel²⁶, S. Rykovanov²⁷, F. Salgado^{18,19}, A. Santra⁶, G. Sarri¹², A. Sävert¹⁸, A. Sbrizzi^{§28}, S. Schmitt⁵, U. Schramm^{2,3}, S. Schuwalow⁵, D. Seipt¹⁸, L. Shaimerdenova²⁹, M. Shchedrolosiev⁵, M. Skakunov²⁹, Y. Soreq²³, M. Streeter¹², K. Swientek¹⁵, N. Tal Hod⁶, S. Tang²¹, T. Teter^{18,19}, D. Thoden⁵, A.I. Titov¹⁶, O. Tolbanov²⁹, G. Torgrimsson³, A. Tyazhev²⁹, M. Wing^{5,17}, M. Zanetti¹³, A. Zarubin²⁹, K. Zeil³, M. Zepf^{18,19}, and A. Zhemchukov¹⁶

More informations:

- CDR, published by European Physics Journal ST: Eur.Phys.J.ST 230 (2021) 11, 2445-2560
- LUXE: <u>https://luxe.desy.de/</u>
- NPOD paper: https://arxiv.org/pdf/2107.13554.pdf

BACK-UP

15

DETECTOR AT THE IP

16

CHERENKOV AND SCINTILLATOR SCREEN (E-LASER: IP DETECTOR ELECTRON SIDE I **GAMMA-LASER: BREM TARGET)**

- Scintillator screen with camera:
 - Position of particles on screen determine energy (thanks to the magnetic field).
 - Signal/background ~100
 - Used for instance at AWAKE at CERN
- Cherenkov detector:
 - Developed for ILC polarimetry.
 - Use low refractive gas index (such as Ar) and optical filter to reduce light yield.
 - Fine segmentation (1.5mm) to resolve Compton edges
 - Signal/background>1000
 - Not sensitive to electron <20 MeV.

photo detectors

Particles / BX

- Three detector technologies
 - Spectrometer with scintillator screens behind converter
 - Measure flux and energy spectrum.
 - Alternative way to reconstruct Compton edges!
 - Backscattering calorimeter using lead glass blocks from HERMES.
 - Measure flux.
 - Gamma profiler (sapphire sensors)
 - Measure location.
 - If use polarized laser, expect angular spectrum of photons to depend on ξ .

TRACKER (E-LASER: IP DETECTOR POSITRON SIDE I GAMMA-LASER: IP DETECTOR BOTH SIDES)

- Use four layers of ALPIDE silicon pixel sensors.
 - Developed for ALICE tracker upgrade.
 - Pitch size: 27 x 29 μ m₂=> spatial resolution ~5 μ m
 - Using tracking algorithm:
 - Background: <0.1 event per bunch crossing
 - Good energy reconstruction

Particles/BX

HIGH GRANULARITY CALORIMETER (E-LASER: IP DETECTOR POSITRON I GAMMA-LASER: IP DETECTOR BOTH SIDES)

- High granularity Calorimeter developed for ILC FCAL
 - 20 layers of 3.5 mm thick tungsten plates
 - Silicon or GaAs sensors (5x5 cm² pads, 320 µm thick), Moliere radius 8 mm
 - Readout via FLAME ASIC (developed for FCAL)
- **Resolution**:

Energy
$$\frac{\sigma_E}{E} = \frac{19.3\%}{\sqrt{E/GeV}}$$
, position: $\sigma_x = 0.78 \ mm$

• Independent measure of energy via position and calorimetry $=> N_{particle}$

WHAT DO WE WANT TO MEASURE?

• Need to measure Compton edges, as they will be shifted to lower energies in SFQED!

- Electron energy spectrum to reconstruct Edges using Finite Impulses Response Filter (FIR) technique.
- Compare result to theory prediction in phase 0:

•	•	- 1
		H
		2.0

22

BLACK HOLE EQUIVALENT

LUXE may be "the closest we can get" to probing Hawking radiation in the lab

LOI Luxe requirements:

- 35 fs laser pulse width
- 130 fs electron pulse length
- machine (electrons) stability

laser oscillator stability

 \rightarrow optical synchronization \rightarrow <10 fs (r

laser stability

- amplification stages \rightarrow additional drift measurement and compensation recommended!
- beam transport to IP (mainly drifts) \rightarrow option: additional fiber link to IP for drift measurement and lacksquarecompensation

\rightarrow BAM diagnostics & feedback, last BAM at end of LINAC (1932m) \rightarrow **10-15 fs (rms)**

	Parameter	Value XFEL.EU	Assumed Values for
	Beam Energy [GeV]	≤ 17.5	
rms)	Bunch Charge [nC]	≤ 1.0	
	Number of bunches/train	2700	
	Repetition Rate [Hz]	10	
	Spotsize at the IP $[\mu m]$		
	Bunch length [µm]	30-50	
	Normalised projected emittance [mm mrad]	1.4	

