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Leptoquark Renaissance 
Deviations in semileptonic processes, 

strong bounds from ΔF=2 & CLFV processes.

To address both B-anomalies: (see talk by C. Cornella)

TeV-scale leptoquark coupled to 3rd and 2nd generation
g(3rd) > g(2nd)  > g(1st)

LQ induce semileptonic @ tree level, 
4-quark & 4-fermion only at loop level.
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From Leptoquarks to the Higgs, and back

From B-anomalies

MLQ ~ TeV

g(3rd) > g(2nd)  > g(1st)

Hierarchical couplings to SM fermions

MBSM-Higgs hierarchy problem ~ TeV

Higgs & EW hierarchy

y(3rd) > y(2nd)  > y(1st)

Hierarchical Yukawa couplings

LQ from same UV responsible for the EW scale, 
connection between LQ couplings and Yukawa couplings.
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Scalar LQ & Higgs: both pseudo-Goldstones?
In Composite Higgs models the Higgs arises as a pseudo-Goldstone (pNGB) 
of a spontaneously broken global symmetry G → H of a TeV-scale strong sector

Elementary
GSM 

q, u, d, l, e

STRONG
GHC       ΨHC

G
H

G → H

Spontaneous global symmetry breaking 
at the f ~ 1 TeV scale

One obtains naturally

mPNGB ≪ MResonances
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Scalar LQ & Higgs: both pseudo-Goldstones?
Scalar LQs could arise as pNGB together with the Higgs 
from the same G/H of the strong sector.

• a pair of scalar leptoquarks, S1 = (3̄,1, 1/3) and S3 = (3̄,3, 1/3),

where I show the representation under the SM gauge group GSM = SU(3)c ⇥ SU(2)w ⇥

U(1)Y .
Going beyond simplified models, embedding these leptoquarks (LQ) in a more com-

plete theory can o↵er further insight and new correlations with di↵erent observables, such
as direct searches of other particles predicted by the UV theory. A first observation to be
made when thinking about possible UV realisations is that the mass scale of the lepto-
quarks required to fit the B-physics anomalies is close to ⇠ 1 TeV, which corresponds also
to the scale where new physics related to the electroweak hierarchy problem is supposed
to be. This coincidence of scales is a strong motivation to look for UV theories which
address both issues in a coherent manner.

Some examples of embedding the vector LQ Uµ
1 in a more complete theory have

been presented in the literature. For example, it can be recognised as one of the heavy
gauge bosons in Pati-Salam unification, or variations thereof [46–50]. In these scenar-
ios, however, the naturalness problem remains unaddressed. Alternatively, Uµ

1 could
arise as a composite vector resonance of a new strongly coupled sector lying at the TeV
scale [33, 51, 52], from which also the Higgs boson arises as a pseudo-Nambu-Goldstone
boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as
neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.
They usually generate undesired too large e↵ects in �F = 2 processes and direct searches,
inducing some tension in the models. The problem can be summarised as the fact that
the mass scale of the other resonances contributing significantly to flavour is naturally at
the same scale as the vector LQ: mV LQ ⇠ ⇤.

The scalar leptoquarks S1 and S3, on the other hand, can be naturally lighter than
the other states in the theory if they arise as pNGB of some spontaneously broken global
symmetry of a new strongly coupled sector:

mSLQ ⌧ ⇤ . (1.1)

This splitting naturally explains why the e↵ects of the scalar leptoquarks in flavour ob-
servables are the leading ones. This idea was explored in Refs. [53,54] in an e↵ective field
theory (EFT) approach, where however only the neutral-current anomalies were consid-
ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same
dynamics, thereby realising a composite Higgs model [55,56] and addressing the natural-
ness problem of the electroweak scale. The S1 and S3 LQs have already been considered,
also separately, as possible mediators for either the neutral- or charged-current anomalies
(or both) in Refs. [24, 28, 31, 34,37, 38,45,53,54, 57–60].

Following this route, in this work I present a natural model able to address at the same
time both the charged- and neutral-current B-physics anomalies via the exchange of the
S1 and S3 scalar leptoquarks. They arise as pNGB, together with the Higgs boson, from
a new strongly coupled sector at the ⇠ 10 TeV scale. Rather than employing an EFT-like
approach, in order to be more predictive and to provide a more realistic and UV-complete
setup I also specify the strong dynamics as a four-dimensional fermionic confining gauge
theory [61–69]. This puts strong constraints on the viable global symmetry-breaking
patterns, therefore on the low-energy chiral Lagrangian.

4

-  Higgs

M

-  Λ ~ gρ f ~ 10 TeV
other resonances

-  f
- mpNGB ~ O(1) TeV

Leptoquarks

Gap

[Gripaios 0910.1789, Gripaios, Nardecchia, Renner 1412.1791]

Having the same origin, it is expected that LQ couplings 
have same structure as Higgs Yukawa couplings: 
possible connection with flavour structure

Low-energy phenomenology dominated by the LQs

Little 
hierarchy 
problem
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A Fundamental Composite Higgs + LQ Model
D.M. 1803.10972

2 An explicit model

Point 6 of the list above suggests to consider the case of complex representations. This
also has the advantage that, introducing vectorlike fermions, the model is automatically
safe from anomalies. The Higgs sector of this model has already been studied in [6].

As sketched already in [1], and in analogy with [7], we add a new non-abelian gauge
group GHC = SU(NHC), assumed to confine at a scale ⇤HC ⇠ 10 TeV, and a vectorlike
set of fermions in the fundamental of this new gauge group and charged under the SM
group as well. In particular, the extra matter content considered in this work is classified
in the following representations under SU(NHC)⇥ SU(3)c ⇥ SU(2)w ⇥ U(1)Y :

 L = (NHC,1,2)YL
,  Q = (NHC,3,2)YL� 1

3
,

 N = (NHC,1,1)YL+
1
2
,

 E = (NHC,1,1)YL� 1
2
,

(1)

where we use the Dirac notation for the fermions. The kinetic term of the Lagrangian for
the theory above ⇤HC reads

LHC = �
1

4

X

X=HC,c,w,Y

FX
µ⌫F

Xµ⌫ +
X

j=L,N,E,Q

 ̄ji�
µDµ j , (2)

whereDµ = @µ�igHCtaAa
µ�i

P
x2c,w,Y gSMx tx

SM
ASM,x

µ and ta are the generators of SU(NHC)
in the fundamental representation while tx

SM
are the generators of the SM gauge groups.

To this Lagrangian one should also add the ✓ terms for QCD and for the HC group. The
former experimentally has to be very small while the latter might induce new sources
of CP violation and might also address the strong CP problem [8]. We will not pursue
further this point in the following.

As will be clear below, the fields  L,  N , and  E are required in order to have a Higgs
as a pNGB, after the theory condenses, as well as custodial symmetry. This setup as a
fundamental composite Higgs model was studied in Ref. [6] and is the minimal one for
a theory with HC fermions in a complex representation of GHC . Finally, the field  Q is
required in order to have also the scalar leptoquarks S1 and S3 as pNGBs.1 Even though
an extension of the matter content in Eq. (1) to a complete copy of the SM multiplets is
tempting, for the sake of minimality we will keep only the strictly necessary fields, as well
as leaving YL free.

Since we need the HC gauge interaction to confine at the scale ⇤HC , we should require
it to be asymptotically free in the ultraviolet. In App. B we show that, with the field
content in Eq. (1), this is true for any NHC � 2. Also, we show that, depending on YL

1Note that another solution, with same number of flavors, could be obtained by substituting  Q with:
 U = (NHC,3,1)YU +  T = (NHC,1,3)YU+ 1

3
, in which case the LQs are given by S3 ⇠ ( ̄U T ),

S1 ⇠ ( ̄U E,N ). In the following we will consider only the case described in the main text, since it is
more minimal in the sense of requiring less representations.

5

Gauge group:

Extra vectorlike 
fermions charged 
under SU(NHC):

SU(NHC) confines at ΛHC ~ 10 TeV

"HyperColor"

SU(NHC) SU(3)c SU(2)w U(1)Y
 L NHC 1 2 YL

 N NHC 1 1 YL + 1/2
 E NHC 1 1 YL � 1/2
 Q NHC 3 2 YL � 1/3

Table 1: Extra Dirac fermions charged under the hypercolor SU(NHC) gauge group. YL is a
free parameter.

The structure of the paper is as follows. In Section 2 I introduce the specific fun-
damental Composite Higgs model, its global symmetries and the low-energy pNGB field
content, which includes two Higgs doublets and the two scalar LQ among other fields.
In Section 3 I discuss the way by which elementary fermions couple to the composite
sector, thereby generating the Higgs Yukawa and leptoquark couplings. These couplings,
together with SM gauge interactions and fermion masses break explicitly the global sym-
metry of the strong sector. This generates a scalar potential for the pNGB, which is
studied in Section 4. This potential is responsible for the Higgs non-vanishing vacuum ex-
pectation value (vev) and for electroweak symmetry breaking (EWSB), Section 4.4. The
flavour phenomenology arising from the LQ couplings to fermions, including the fit to
the B-physics anomalies, is studied in Section 5. The most interesting collider signatures,
as well as the present limits from direct searches, are presented in Section 6. Finally, I
conclude in Section 7.

2 A fundamental Composite Higgs Model

The naturalness problem of the electroweak scale can be solved by assuming that the Higgs
boson is a composite state of a new strong dynamics at a scale ⇤ ⇠ TeV. Furthermore,
the splitting mh ⌧ ⇤, required by phenomenological constraints, can be naturally realised
if the Higgs arises as a pseudo Nambu-Goldstone boson from the spontaneous breaking
of an (approximate) global symmetry of the strong dynamics [55,56], in close analogy to
the pions in QCD.

Extending this idea to include the scalar leptoquarks S1 and S3, I construct a fermionic
fundamental description of a composite model, from which both the scalar LQ and the
Higgs arise as pNGBs. See App. A for a general discussion on the requirements such a
UV setup should satisfy.

2.1 The explicit model

As sketched already in Ref. [45], and in analogy with Refs. [27, 67, 68], I add a new non-
abelian gauge group GHC = SU(NHC), assumed to confine at a scale ⇤HC ⇠ 10 TeV, and
a vectorlike set of fermions in the fundamental (and anti-fundamental) representation of
this new gauge group and charged under the SM group as well. The extra matter content
considered in this work, classified in representations of SU(NHC) ⇥ SU(3)c ⇥ SU(2)w ⇥

U(1)Y , is shown in Table 1. The kinetic term of the Lagrangian for the theory above ⇤HC

5

QCD-like!!
For similar constructions see: 
Shmaltz et al 1006.1356, 
Vecchi 1506.00623, 
Ma, Cacciapaglia 1508.07014

  f  ~ 1TeV
Approximate global symmetry, spontaneously broken (as chiral symm. in QCD)

G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

and NHC , the SM gauge couplings can be kept to be perturbative up to the Planck scale.
However, it should be kept in mind that the need to introduce some new dynamics slightly
above the scale ⇤HC , in order to generate the top Yukawa and the leptoquark couplings,
is expected to alter the RG evolution of the gauge couplings.

2.1 Condensate and pNGBs

This theory is expected to form a condensate [9–11]

h ̄i ji = �B0f
2�ij . (3)

Since the total number of flavors is 10, in the absence of SM gauging and other explicit
breakings the global symmetry group of the theory is G = SU(10)L ⇥ SU(10)R ⇥ U(1)X ,
spontaneously broken to the diagonal subgroup H = SU(10)D⇥U(1)X . This spontaneous
symmetry breaking generates a set of 99 (real) pseudo Nambu-Goldstone bosons (pNGB)
transforming in the adjoint of SU(10)D. Under GSM = SU(3)c⇥SU(2)w⇥U(1)Y they are
arranged in the following irreps:

valence irrep. valence irrep. d.o.f.
H1 = ( ̄L N) (1,2)1/2 Hc

2
= ( ̄L E) (1,2)�1/2 4 + 4

!± = ( ̄N E) (1,1)�1 ⇧L = ( ̄L�a L) (1,3)0 2 + 3
S1 = ( ̄Q L) (3̄,1)1/3 S3 = ( ̄Q�a L) (3̄,3)1/3 6 + 18
R̃2 = ( ̄Q E) (3̄,2)�1/6 T2 = ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 = ( ̄QTA Q) (8,1)0 ⇡̃3 = ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q = ( ̄Q�a Q) (1,3)0 ⌘i = 3⇥ ( ̄i i) (1,1)0 3 + 3

. (4)

In particular, we see that the pNGB include two Higgs doublets H1,2 as well as the two
leptoquarks S1,3.

All the pNGB can be described in terms of the matrix U [�(x)],

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (5)

where f is the NGB decay constant and T ↵ are the SU(10) generators normalised as
Tr[T ↵T �] = 1

2
�↵�. The complete list is provided in App. A.1. The pNGB matrix U

transforms under G as U ! gLUg†R. The connection between the basis of pNGB fields �↵

and the one into SM irreducible representations is given in App. A.3.
In order to estimate the size of various operators in the low energy chiral Lagrangian,

we assume NDA power counting [12] opportunely extended to the fermion sector (see
e.g. [13]):

L
e↵

⇠ ⇤2f 2

✓
⇤

4⇡f

◆2L ✓�a

f

◆E� ✓gVµ

⇤

◆EV
✓

 
p
⇤f

◆E ✓@µ
⇤

◆d ✓�, m̃

⇤

◆� ✓gf

⇤

◆2µ

, (6)

6
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G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

resulting massless eigenvalues (i.e. the SM fermions) are partially composite, and a cou-
pling with the Higgs is obtained [93]. On the one hand, this setup usually requires light
composite fermionic top partners [94–96] as well as partners for each SM fermion. On the
other hand, in models with a fundamental fermionic description of the HC sector these
composite fermions are baryonic resonances, which are expected to have a mass near ⇤HC ,
far too heavy to be viable top partners in a partial compositeness setup. Furthermore,
devising a UV completion of this mechanism has proven to be challenging.3

For all these reasons, I assume instead that the bilinears of SM fermions couple to
scalar operators of the strong sector, which at low energy are interpolated by pNGB
fields such as the Higgses or the leptoquarks, as in original Technicolor models [100,101]:
L ⇠

P
 y  ̄SM SMO. These couplings can arise from four-fermion operators with two

SM and two HC-charged fermions:

L4�Fermi ⇠
c  
⇤d�1

t

 ̄SM SM ̄ 
E.⇤HC

�! ⇠ c  f

✓
⇤HC

⇤t

◆d�1

 ̄SM SM
�

f
, (3.1)

where the scaling dimension of the scalar operator ( ̄ ) is given by d = 3 � �, where
� > 0 is the anomalous dimension of the operator. At the scale ⇤t some dynamics
should be responsible for generating these operators. A sizeable part of the Technicolor
(TC) literature focussed on the study of such a dynamics: Extended TC, Walking TC,
etc.. See e.g. Refs. [102, 103] for reviews of this topic and a list of references. For
this first exploration of the model I take a bottom-up approach and do not discuss UV
completions of these operators, leaving it for a future dedicated analysis. Using simply
the NDA estimate of Eq. (2.8) with E4f = 1 one obtains that the final Yukawa coupling
is y � ⇠ O(1).

One of the main problems of such a setup is due to the fact that the dynamics respon-
sible for generating these operators is also likely to produce four-fermion operators of the
form

L4�Fermi �
c  
⇤2

t

 ̄SM SM  ̄SM SM +
c  
⇤2

t

 ̄  ̄ . (3.2)

The e↵ect of ( )4 operators is to generate further e↵ective contributions to the pNGB
masses in Eq. (4.1). Since these pNGB should be heavy enough to pass the phenomeno-
logical constraints, this is not an unwanted feature. On the contrary, if they generate
large enough masses for the singlets pNGBs, it could be possible to eliminate the need of
fundamental HC fermion masses. The ( SM)4 operators, instead, could generate danger-
ous e↵ects in flavour physics (particularly in meson-antimeson mixing and lepton flavour
violating processes).

If the strong sector is close to an interactive IR conformal fixed point above the scale
⇤HC , a sizeable value of the anomalous dimension � could allow to increase the gap
between ⇤HC and ⇤t, thus suppressing the flavour-violating operators. See e.g. Refs. [61,
71, 72] for modern realisations of this idea and for a discussion of the problems one may
encounter in this approach.

3Possible 4d UV completion of the partial compositeness scenario have been obtained by introducing
extra elementary HC-colored scalars [40,86,93] or in a supersymmetric setup [97,98]. Partial composite-
ness also arises naturally in extra-dimensional holographic Higgs models [99].
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Like QCD pions, the pNGB are composite states of HC-fermion bilinears:
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G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

resulting massless eigenvalues (i.e. the SM fermions) are partially composite, and a cou-
pling with the Higgs is obtained [93]. On the one hand, this setup usually requires light
composite fermionic top partners [94–96] as well as partners for each SM fermion. On the
other hand, in models with a fundamental fermionic description of the HC sector these
composite fermions are baryonic resonances, which are expected to have a mass near ⇤HC ,
far too heavy to be viable top partners in a partial compositeness setup. Furthermore,
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etc.. See e.g. Refs. [102, 103] for reviews of this topic and a list of references. For
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The e↵ect of ( )4 operators is to generate further e↵ective contributions to the pNGB
masses in Eq. (4.1). Since these pNGB should be heavy enough to pass the phenomeno-
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ous e↵ects in flavour physics (particularly in meson-antimeson mixing and lepton flavour
violating processes).

If the strong sector is close to an interactive IR conformal fixed point above the scale
⇤HC , a sizeable value of the anomalous dimension � could allow to increase the gap
between ⇤HC and ⇤t, thus suppressing the flavour-violating operators. See e.g. Refs. [61,
71, 72] for modern realisations of this idea and for a discussion of the problems one may
encounter in this approach.

3Possible 4d UV completion of the partial compositeness scenario have been obtained by introducing
extra elementary HC-colored scalars [40,86,93] or in a supersymmetric setup [97,98]. Partial composite-
ness also arises naturally in extra-dimensional holographic Higgs models [99].
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Like QCD pions, the pNGB are composite states of HC-fermion bilinears:

and NHC , the SM gauge couplings can be kept to be perturbative up to the Planck scale.
However, it should be kept in mind that the need to introduce some new dynamics slightly
above the scale ⇤HC , in order to generate the top Yukawa and the leptoquark couplings,
is expected to alter the RG evolution of the gauge couplings.

2.1 Condensate and pNGBs

This theory is expected to form a condensate [9–11]

h ̄i ji = �B0f
2�ij . (3)

Since the total number of flavors is 10, in the absence of SM gauging and other explicit
breakings the global symmetry group of the theory is G = SU(10)L ⇥ SU(10)R ⇥ U(1)X ,
spontaneously broken to the diagonal subgroup H = SU(10)D⇥U(1)X . This spontaneous
symmetry breaking generates a set of 99 (real) pseudo Nambu-Goldstone bosons (pNGB)
transforming in the adjoint of SU(10)D. Under GSM = SU(3)c⇥SU(2)w⇥U(1)Y they are
arranged in the following irreps:

valence irrep. valence irrep. d.o.f.
H1 = ( ̄L N) (1,2)1/2 Hc

2
= ( ̄L E) (1,2)�1/2 4 + 4

!± = ( ̄N E) (1,1)�1 ⇧L = ( ̄L�a L) (1,3)0 2 + 3
S1 = ( ̄Q L) (3̄,1)1/3 S3 = ( ̄Q�a L) (3̄,3)1/3 6 + 18
R̃2 = ( ̄Q E) (3̄,2)�1/6 T2 = ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 = ( ̄QTA Q) (8,1)0 ⇡̃3 = ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q = ( ̄Q�a Q) (1,3)0 ⌘i = 3⇥ ( ̄i i) (1,1)0 3 + 3

. (4)

In particular, we see that the pNGB include two Higgs doublets H1,2 as well as the two
leptoquarks S1,3.

All the pNGB can be described in terms of the matrix U [�(x)],

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (5)

where f is the NGB decay constant and T ↵ are the SU(10) generators normalised as
Tr[T ↵T �] = 1

2
�↵�. The complete list is provided in App. A.1. The pNGB matrix U

transforms under G as U ! gLUg†R. The connection between the basis of pNGB fields �↵

and the one into SM irreducible representations is given in App. A.3.
In order to estimate the size of various operators in the low energy chiral Lagrangian,

we assume NDA power counting [12] opportunely extended to the fermion sector (see
e.g. [13]):

L
e↵

⇠ ⇤2f 2

✓
⇤

4⇡f

◆2L ✓�a

f

◆E� ✓gVµ

⇤

◆EV
✓

 
p
⇤f

◆E ✓@µ
⇤

◆d ✓�, m̃

⇤

◆� ✓gf

⇤

◆2µ

, (6)
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Several states are present at the TeV scale as pNGB, including
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and compositeness scales. Also, in this case ΛHC could be generated by the soft breaking

of the conformal symmetry due to the HC-fermion masses, thus potentially explaining dy-

namically the approximate coincidence between ΛHC and mΨ. Perturbative computations

suggest that for GHC = SU(3) the strong dynamics has a strongly coupled IR fixed point in

the window 9 ≤ NF ≤ 16 [68], which includes this setup. See also refs. [74–81] for lattice

studies for different values of the number of flavours.

2.2 Condensate and pNGBs

This theory is expected to form a condensate [82–84]

〈Ψ̄iΨj〉 = −B0f
2δij , (2.4)

where B0 is a non-perturbative constant (see e.g. refs. [85, 86] for the QCD case), which

in the QCD case is approximately given by B0 ≈ 20f . For NHC = 3 and NF = 10 also the

condition quoted in ref. [87] for the condensate to form is satisfied.

This condensate spontaneously breaks the global symmetry G, eq. (2.2), to the diagonal

subgroup

G = SU(10)L × SU(10)R ×U(1)HB → H = SU(10)D ×U(1)HB , (2.5)

generating a set of 99 real pNGBs transforming in the adjoint of SU(10)D. They can be

described in terms of the matrix U(φ) ≡ u(φ)2,

U [φ(x)] = exp

(
2i
φα(x)

f
Tα
)
, (2.6)

transforming under (gL, gR) ∈ G as U → gRUg†L [88, 89]. In the expression above, f is the

NGB decay constant and Tα are the SU(10) generators normalised as Tr[TαT β ] = 1
2δ
αβ .

The complete list of generators and the SM embedding is detailed in appendix C.1. The

pNGBs are arranged into representations of GSM = SU(3)c × SU(2)w × U(1)Y as (see

appendix C.2 for details):

valence irrep. valence irrep. d.o.f.

H1 ∼ iσ2(Ψ̄LΨN ) (1,2)1/2 H2 ∼ (Ψ̄EΨL) (1,2)1/2 4 + 4

S1 ∼ (Ψ̄QΨL) (3̄,1)1/3 S3 ∼ (Ψ̄QσaΨL) (3̄,3)1/3 6 + 18

ω± ∼ (Ψ̄NΨE) (1,1)−1 ΠL ∼ (Ψ̄LσaΨL) (1,3)0 2 + 3

R̃2 ∼ (Ψ̄EΨQ) (3,2)1/6 T2 ∼ (Ψ̄QΨN ) (3̄,2)5/6 12 + 12

π̃1 ∼ (Ψ̄QTAΨQ) (8,1)0 π̃3 ∼ (Ψ̄QTAσaΨQ) (8,3)0 8 + 24

ΠQ ∼ (Ψ̄QσaΨQ) (1,3)0 ηi ∼ 3× cai (Ψ̄aΨa) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general

bottom-up study of composite Higgs models with two Higgs doublets can be found in

ref. [90].
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H and LQ are close partners!!

A Fundamental Composite Higgs + LQ Model
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Coupling with SM fermions from 4-fermion operators

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (1)

⇤t & ⇤HC (2)

�B(B ! K
⇤
⌫⌫) / (3)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (4)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(5)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (6)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (7)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(8)

1

⇤2
qqµ

⇥
�
q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (9)

L � ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (10)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (11)

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(12)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (13)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (14)

(CT � CS)�bs(b̄L�µsL)(⌫̄⌧�
µ
⌫⌧ ) (15)

⇠ 3y2t
16⇡2

log
M

2
X

m
2
t

CT

v2
(H†

�
a
i

$
Dµ H)(L̄3

L�
µ
�
a
L
3
L) (16)

� CT

v2
(Q̄3

L�µ�
a
Q

3
L)(L̄

3
L�

µ
�
a
L
3
L) (17)

� CT

v2
�
q

bs
(Q̄3

L�µ�
a
Q

2
L)(L̄

3
L�

µ
�
a
L
3
L) (18)

CT ⇠ g
2
X

v
2

M
2
X

(19)

Q
3
L = (V ⇤

tb
tL + V

⇤
cb
cL + V

⇤
ub
uL, bL)

T
(20)

R
D(⇤) ⌘ R(D(⇤))/R(D(⇤))SM = 1.234± 0.052 (21)

1

Yukawas & 
LQ couplings

+ approximate U(2)5 flavor symmetry to protect from unwanted flavor violation

G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

resulting massless eigenvalues (i.e. the SM fermions) are partially composite, and a cou-
pling with the Higgs is obtained [93]. On the one hand, this setup usually requires light
composite fermionic top partners [94–96] as well as partners for each SM fermion. On the
other hand, in models with a fundamental fermionic description of the HC sector these
composite fermions are baryonic resonances, which are expected to have a mass near ⇤HC ,
far too heavy to be viable top partners in a partial compositeness setup. Furthermore,
devising a UV completion of this mechanism has proven to be challenging.3

For all these reasons, I assume instead that the bilinears of SM fermions couple to
scalar operators of the strong sector, which at low energy are interpolated by pNGB
fields such as the Higgses or the leptoquarks, as in original Technicolor models [100,101]:
L ⇠

P
 y  ̄SM SMO. These couplings can arise from four-fermion operators with two

SM and two HC-charged fermions:

L4�Fermi ⇠
c  
⇤d�1

t

 ̄SM SM ̄ 
E.⇤HC

�! ⇠ c  f

✓
⇤HC

⇤t

◆d�1

 ̄SM SM
�

f
, (3.1)

where the scaling dimension of the scalar operator ( ̄ ) is given by d = 3 � �, where
� > 0 is the anomalous dimension of the operator. At the scale ⇤t some dynamics
should be responsible for generating these operators. A sizeable part of the Technicolor
(TC) literature focussed on the study of such a dynamics: Extended TC, Walking TC,
etc.. See e.g. Refs. [102, 103] for reviews of this topic and a list of references. For
this first exploration of the model I take a bottom-up approach and do not discuss UV
completions of these operators, leaving it for a future dedicated analysis. Using simply
the NDA estimate of Eq. (2.8) with E4f = 1 one obtains that the final Yukawa coupling
is y � ⇠ O(1).

One of the main problems of such a setup is due to the fact that the dynamics respon-
sible for generating these operators is also likely to produce four-fermion operators of the
form

L4�Fermi �
c  
⇤2

t

 ̄SM SM  ̄SM SM +
c  
⇤2

t

 ̄  ̄ . (3.2)

The e↵ect of ( )4 operators is to generate further e↵ective contributions to the pNGB
masses in Eq. (4.1). Since these pNGB should be heavy enough to pass the phenomeno-
logical constraints, this is not an unwanted feature. On the contrary, if they generate
large enough masses for the singlets pNGBs, it could be possible to eliminate the need of
fundamental HC fermion masses. The ( SM)4 operators, instead, could generate danger-
ous e↵ects in flavour physics (particularly in meson-antimeson mixing and lepton flavour
violating processes).

If the strong sector is close to an interactive IR conformal fixed point above the scale
⇤HC , a sizeable value of the anomalous dimension � could allow to increase the gap
between ⇤HC and ⇤t, thus suppressing the flavour-violating operators. See e.g. Refs. [61,
71, 72] for modern realisations of this idea and for a discussion of the problems one may
encounter in this approach.

3Possible 4d UV completion of the partial compositeness scenario have been obtained by introducing
extra elementary HC-colored scalars [40,86,93] or in a supersymmetric setup [97,98]. Partial composite-
ness also arises naturally in extra-dimensional holographic Higgs models [99].
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However, it should be kept in mind that the need to introduce some new dynamics slightly
above the scale ⇤HC , in order to generate the top Yukawa and the leptoquark couplings,
is expected to alter the RG evolution of the gauge couplings.

2.1 Condensate and pNGBs

This theory is expected to form a condensate [9–11]

h ̄i ji = �B0f
2�ij . (3)

Since the total number of flavors is 10, in the absence of SM gauging and other explicit
breakings the global symmetry group of the theory is G = SU(10)L ⇥ SU(10)R ⇥ U(1)X ,
spontaneously broken to the diagonal subgroup H = SU(10)D⇥U(1)X . This spontaneous
symmetry breaking generates a set of 99 (real) pseudo Nambu-Goldstone bosons (pNGB)
transforming in the adjoint of SU(10)D. Under GSM = SU(3)c⇥SU(2)w⇥U(1)Y they are
arranged in the following irreps:
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. (4)

In particular, we see that the pNGB include two Higgs doublets H1,2 as well as the two
leptoquarks S1,3.

All the pNGB can be described in terms of the matrix U [�(x)],

U [�(x)] = exp
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, (5)

where f is the NGB decay constant and T ↵ are the SU(10) generators normalised as
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�↵�. The complete list is provided in App. A.1. The pNGB matrix U

transforms under G as U ! gLUg†R. The connection between the basis of pNGB fields �↵

and the one into SM irreducible representations is given in App. A.3.
In order to estimate the size of various operators in the low energy chiral Lagrangian,

we assume NDA power counting [12] opportunely extended to the fermion sector (see
e.g. [13]):

L
e↵

⇠ ⇤2f 2

✓
⇤

4⇡f

◆2L ✓�a

f

◆E� ✓gVµ

⇤

◆EV
✓

 
p
⇤f

◆E ✓@µ
⇤

◆d ✓�, m̃

⇤

◆� ✓gf

⇤

◆2µ

, (6)

6

Singlet and Triplet LQ:        S1 ~ (3,1)-1/3   +   S1 ~ (3,3)-1/3

Two Higgs doublets:           HSM ,  H̃2   ~ (1,2)1/2

Several states are present at the TeV scale as pNGB, including

J
H
E
P
0
7
(
2
0
1
8
)
1
2
1

and compositeness scales. Also, in this case ΛHC could be generated by the soft breaking

of the conformal symmetry due to the HC-fermion masses, thus potentially explaining dy-
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where B0 is a non-perturbative constant (see e.g. refs. [85, 86] for the QCD case), which

in the QCD case is approximately given by B0 ≈ 20f . For NHC = 3 and NF = 10 also the

condition quoted in ref. [87] for the condensate to form is satisfied.

This condensate spontaneously breaks the global symmetry G, eq. (2.2), to the diagonal
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G = SU(10)L × SU(10)R ×U(1)HB → H = SU(10)D ×U(1)HB , (2.5)

generating a set of 99 real pNGBs transforming in the adjoint of SU(10)D. They can be

described in terms of the matrix U(φ) ≡ u(φ)2,

U [φ(x)] = exp

(
2i
φα(x)

f
Tα
)
, (2.6)

transforming under (gL, gR) ∈ G as U → gRUg†L [88, 89]. In the expression above, f is the

NGB decay constant and Tα are the SU(10) generators normalised as Tr[TαT β ] = 1
2δ
αβ .

The complete list of generators and the SM embedding is detailed in appendix C.1. The

pNGBs are arranged into representations of GSM = SU(3)c × SU(2)w × U(1)Y as (see

appendix C.2 for details):

valence irrep. valence irrep. d.o.f.
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ΠQ ∼ (Ψ̄QσaΨQ) (1,3)0 ηi ∼ 3× cai (Ψ̄aΨa) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general

bottom-up study of composite Higgs models with two Higgs doublets can be found in

ref. [90].
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H and LQ are close partners!!

A Fundamental Composite Higgs + LQ Model
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Phenomenology of S1 and S3

S1 = (3,̅ 1, 1/3), 
S3 = (3,̅ 3, 1/3),

Scalar Leptoquarks

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, 
DM 1706.07808; D.M. 1803.10972; Arnan et al 

1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 
1912.04224; Saad 2005.04352; V. Gherardi, E. 

Venturini, D.M. 2003.12525, 2008.09548; Bordone, 
Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 

2010.06593, 2101.07811; S. Trifinopoulos, E. 
Venturini, D.M. [2106.15630]; ETC…

1) Match SM + S1+S3 to SMEFT @ 1-loop 
(SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature)

V. Gherardi, E. Venturini, D.M. [2003.12525]
[Alonso, Jenkins, Manohar, Trott ’13]
[Dekens, Stoffer 1908.05295]
[Jenkins, Manohar, Stoffer 1711.05270](see talk by F. Wilsch)

https://arxiv.org/abs/1803.10972
https://arxiv.org/abs/2003.12525
https://arxiv.org/abs/2008.09548
https://arxiv.org/abs/2106.15630
https://arxiv.org/abs/2003.12525
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2) Global analysis of B-anomalies + all relevant observables
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(see talk by F. Wilsch)
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2) Global analysis of B-anomalies + all relevant observables
V. Gherardi, E. Venturini, D.M. [2008.09548]

3) Include 1st gen couplings and study Kaon & µ → e 
observables assuming U(2)5 flavor symmetry.
S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

(see talk by F. Wilsch)
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S1 and S3 - global analysis
Using the complete one-loop matching to 
SMEFT, we include in our analysis the 
following observables.

Observable Experimental bounds

Z boson couplings App. A.12
�gZ

µL
(0.3± 1.1)10�3 [99]

�gZ
µR

(0.2± 1.3)10�3 [99]
�gZ

⌧L
(�0.11± 0.61)10�3 [99]

�gZ
⌧R

(0.66± 0.65)10�3 [99]
�gZ

bL
(2.9± 1.6)10�3 [99]

�gZ
cR

(�3.3± 5.1)10�3 [99]
N⌫ 2.9963± 0.0074 [100]

Table 3: Limits on the deviations in Z boson couplings to fermions from LEP I.

observables), both at tree-level or one-loop level. Therefore, to quantify how the S1,3

model can consistently explain the observed anomalies, one should take into account a set
of low-energy data as complete as possible. In Tables 1, 2, and 3, we show the list of low-
energy observables that we analyze, together with their SM predictions and experimental
bounds.

In App. A, these low-energy observables are discussed in length. We will explicitly
show, as functions of the parameters of the S1,3 model, tree-level contributions together
with dominant one-loop e↵ects, while in the numerical analysis the full set of one-loop cor-
rections is considered. Some of the considered observables vanish or are flavor-suppressed
at tree-level, for example meson-mixing �F = 2 processes, ⌧ ! 3µ and ⌧ ! µ� LFV
interactions or ⌧ ! µ�(⌘, ⌘0) decay; in such cases the inclusion of one-loop contributions
is relevant and might bring non negligible changes in a global fit of the low-energy data.

From the observables listed above, and their expression in terms of the parameters of
the model, LQ couplings and masses, we build a global likelihood as:

�2 logL ⌘ �2(�x,Mx) =
X

i

(Oi(�x,Mx)� µi)
2

�2

i

, (2.6)

where Oi(�x,Mx) is the expression of the observable as function of the model parameters,
µi its experimental central value, and �i the uncertainty. These are all discussed in
App. A. From the �2 built in this way, in each scenario considered we obtain the maximum
likelihood point by minimizing the �2, which we use to compute the ��2 ⌘ �2 � �2

min
.

This allows us to obtain the 68, 95, and 99% CL regions. In the Standard Model limit we
get a �2

SM
= 101.0, for 50 observables.

For each scenario we get the CL regions in the plane of two real couplings, by profiling
the likelihood over all the other couplings. We are often also interested in the values
of some observables corresponding to these CL regions. To obtain this, we perform a
numerical scan over all the parameter space5 and select only the points with a ��2 less
than the one corresponding to 68 and 95%CL. The points obtained in this way also

5For each numerical scan we collected O(104) benchmark points. For our more complex models (i.e.
with up to ten parameters), this is quite demanding from the computational point of view; in order to
e�ciently scan the high-dimensional parameter spaces, we employ a Markov Chain Monte Carlo algorithm
(Hastings-Metropolis) for the generation of trial points.

9

Drell-Yan

[1808.08179]

All these are used to build a 
global likelihood.
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S1 and S3 — only LH couplings
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Plots updated w.r.t. [v3:2008.09548]

b → s µµ

(see backup slides for a S1+S3 scenario that 
addresses also the muon magnetic moment)
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b → s µµ

very good fit of 
B-anomalies

(see backup slides for a S1+S3 scenario that 
addresses also the muon magnetic moment)
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Figure 5: Result from the fit in the S1 + S3
(LH) model, with only left-handed couplings. In

the upper panels we show the preferred regions in the planes of two couplings, where the two
not shown are profiled over. The dashed lines show, for illustrative purposes, 2� limits from
individual observables where the other couplings are fixed at the best-fit point (black dot). In
the lower panels we show where the preferred region is mapped in the planes of the neutral and
charged-current anomalies.
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while the contribution to meson mixing goes as �4/M2.
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cU(2) = 1

e.g. 3 - 5

See also Buttazzo, Greljo, Isidori, D.M. 1706.07808

(see backup slides for a S1+S3 scenario that 
addresses also the muon magnetic moment)
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A hint for a flavor struture: U(2)5
In first approximation only the 3rd generation couples to the Higgs.

In this case the theory enjoys a U(2)5 global symmetry

We perform a �2 fit, thus defining the likelihood as

�2 logL ⌘ �2(�x,Mx) =
X

i

(Oi(�x,Mx)� µi)
2

�2
i

, (3)

where Oi(�x,Mx) is the expression of the observable as function of the model parameters,
µi its central measured value, and �i the associated standard deviation, that are shown in
App. A and in [1]. In the analysis presented in this paper, 71 observables are taken into
account, for which, within the SM, the �2 is �2

SM = 99.67. The confidence regions for any
couple of fitted parameters, discussed in the following sections, are obtained profiling over
the others. Plots showing confidence regions and correlations for observables will also be
presented; they are obtained with a numerical scan, with points sample of O(104) size,
over the parameter space, performed with a Markov Chain Monte Carlo algorithm.

3 Scalar leptoquarks and U(2)5 flavor symmetry

In the limit where only third generaton fermions are massive, the SM enjoys the global
flavor symmetry [?,?,?]

GF = U(2)q ⇥ U(2)` ⇥ U(2)u ⇥ U(2)d ⇥ U(2)e . (4)

Masses of the first two generations of fermions and their mixing break this symmetry.
In the quark sector the largest breaking is of size ✏ ⇡ yt|Vts| ⇡ 0.04 [5]. Formally, the
symmetry breaking terms in the Yukawa matrices can be described in terms of spurions
transforming under representations ofGF . The minimal set of spurions that can reproduce
the observed masses and mixing angles is 2

Vq ⇠ (2,1,1,1,1) , V` ⇠ (1,2,1,1,1) ,

�u ⇠ (2,1, 2̄,1,1) , �d ⇠ (2,1, 1̄,2,1) , �e ⇠ (1,2, 1̄,1,2) .
(5)

In terms of these spurions the SM Yukawa matrices can be written as

Yu(d) = yt(b)

✓
�u(d) xt(b)Vq

0 1

◆
, Ye = y⌧

✓
�e x⌧V`

0 1

◆
, (6)

with xt,b,⌧ are O(1) complex numbers.
In the context of the B-anomalies, this flavour symmetry was introduced as a possi-

ble explanation for the lepton-flavour universality breaking hints, that point to largest
e↵ects for ⌧ leptons, smaller for muons, and even smaller for electrons. Furthermore, it

2Strictly speaking V` is not required in the SM, since in absence of neutrino masses lepton mixing is
unphysical. It is however usually added for symmetry with the quark sector and, in our case, because it
is required in order to address the R(K(⇤)) anomalies, which requires |V`| ⇠ O(0.1) [].

6

Barbieri et al. [1105.2296, 1203.4218, 1211.5085] 

The minimal breaking of this symmetry to reproduce the SM Yukawas is described by a set of spurions:

VqΔu,d

10    0
Yu,d ~

VℓΔe

10    0
Ye ~

Diagonalizing quark masses, the  Vq doublet spurion is fixed to be
See also Fuentes-Martin, Isidori, Pagès, Yamamoto [1909.02519] κq ~ O(1)
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Vq*

1Vℓ

Vℓ×λ1(3)L ~

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

or

11311 yo
sellUtd 11 Vell Xi

V4Xii seVevts He VeUts Xi Vts
til Seve til Ve y

Se sin de

Ve

dL

sL

bL

eL μL τL

i.e. 

U(2)5 flavour symmetry and leptoquarks

Vq*
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til Seve til Ve y

Se sin de

Ve

dL

sL

bL

eL μL τL

i.e. 

The leptoquark couplings to first generations 
are now fixed in terms of couplings 

to the second generation:

Exact relations
(selection rules)

We can now correlate Kaon physics observables to B-anomalies!
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Global analysis with U(2)5
We perform a global fit in the U(2)5 flavour structure.

Vℓ ~ 0.1, |se| ≲ 0.02

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

The parameters are consistent with the symmetry: all x’s are O(1),

https://arxiv.org/abs/2106.15630
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Figure 2: Results of a parameter scan in the U(2)5 scenario. The green (yellow) points are
within the 68% (95%) CL from the best-fit point.

Therefore, the reason for the inability of the U(2)5-symmetric scenario to address
charged-current anomalies must be found in first-generation constraints, specifically Kaon
physics. Indeed, this can be seen in the first row of Fig. 1, where we observe that the
bounds from K+ ! ⇡+⌫̄⌫, Eq. (15), and ✏K (i.e. ImC1

K
), Eq. (16), in combination with

the constraints on �1,3 from Z ! ⌧̄ ⌧ , Eq. (17), don’t allow the fit to enter the region
preferred by R(D(⇤)), due to the precise relations between couplings to the first and the
second generation, derived from the flavour structure, i.e. Eq. (10). We also observe from
Fig. 1 that values V` ⇡ 0.1 and |se| . 0.02 are preferred, while all the x’s can be of O(1).

Regarding Kaon physics observables, from the bottom row of Fig. 2 we see that
B(K+ ! ⇡+⌫̄⌫) can take all values corrently allowed by the NA62 bound [?] (we show
with vertical lines the best-fit and the ±1� intervals) and therefore any future update on
this observable will put further strong constraints on this scenario. Furthermore, since
the phase in s ! d⌫⌫ is fixed by the corresponding CKM phase, Eq. (15), a linear rela-
tion between this mode and B(KL ! ⇡0⌫̄⌫) is obtained, with values ⇠ 10�10 also for the
latter. This implies that also the end of stage-I of the KOTO experiment won’t be able
to reach the sensitivity to test this model (brown horizontal dotted line). However, the
future sensitivity goals by NA62 (10% [?]) and KOTO at phase-II, or KLEVER, (20% [?])
would be able to completely test this scenario (purple ellipse).

10

b→ sμμ can be addressed:

https://arxiv.org/abs/2106.15630
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This is due to the combination of the constraints from Z→ττ and K+→π+ νν
Global analysis with U(2)5

Z→ττ
Z→ττ

R(D (* ))
K+→π+ νν

K+→π+ νν

R(D
( *) )

setup, deferring for details to App. A:

�R(D(⇤))

R(D(⇤))SM
⇡ v2

✓
1.09

|�1|2(1� x1⇤
q
V ⇤
tb
)

2M2
1

� 1.02
|�3|2(1� x3⇤

q
V ⇤
tb
)

2M2
3

◆
, (11)

�Csbµµ

9 = ��Csbµµ

10 ⇡ ⇡p
2GF↵Vtb

|�3|2|V`|2x3
`
x3⇤
q`

M2
3

, (12)

�Cdsµµ

9 = ��Cdsµµ

10 ⇡ ⇡p
2GF↵

|�3|2|V`|2|x3
q`
|2

M2
3

, (13)

⇥
LV LL

⌫d

⇤
⌫⌧⌫⌧ sb

⇡ V ⇤
ts

✓ |�1|2x1⇤
q

2M2
1

+
|�3|2x3⇤

q

2M2
3

◆
, (14)

⇥
LV LL

⌫d

⇤
⌫⌧⌫⌧ds

⇡ V ⇤
td
Vts

✓ |�1|2|x1
q
|2

2M2
1

+
|�3|2|x3

q
|2

2M2
3

◆
, (15)

C1
K

⇡ V ⇤
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Vtd

128⇡2

✓ |�1|4|x1
q
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|�3|4|x3

q
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+
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|2|x3
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|2 logM2

3/M
2
1

M2
3 �M2

1

◆
,(16)

103�gZ
⌧L

⇡ 0.59
|�1|2

M2
1/ TeV2 + 0.80

|�1|2

M2
1/ TeV2 , (17)

where
⇥
LV LL

⌫d

⇤
⌫⌧⌫⌧didj

are the Wilson coe�cients (WCs) of the low-energy operators

(⌫̄⌧�µ⌫⌧ )(d̄iL�
µdj

L
), C1

K
is the coe�cient of the (s̄�µPLd)2 operator, and �gZ

⌧L
describes the

deviation in the Z couplings to ⌧L.
The leading contribution to s ! dµµ transitions has a phase fixed to be equal to the

SM one, so no large e↵ect in KS ! µµ can be expected. Analogously, also in s ! d⌫⌫ the
NP coe�cients have the same phase as in the SM, since the x coe�cients enter with the
absolute value squared. This implies that no cancellation between the two leptoquarks
can take place in this channel and that we expect a linear relation between KL ! ⇡0⌫⌫
and K+ ! ⇡+⌫⌫, independently on the phases of the couplings. Similar considerations
apply for all s ! d transitions. On the other hand, non-trivial phases can appear in
b ! s transitions and a mild cancellation can alleviate the B ! K(⇤)⌫⌫ bound [31]. Since
real couplings are favored by the B-anomalies and since in any case the phases in Kaon
physics observables are fixed by the U(2)5 flavor structure, in our numerical analysis we
only consider real values for all parameters.

3.1 Analysis and discussion

Using the global likelihood we find the following best-fit point in parameter space, where
the x’s are allowed to vary in the range |x| < 5, while �1(3), V` > 0. Fixing M1 = M3 =
1.1 TeV we get:

best-fit U(2)5 :
�1 ⇡ 0.79 , �3 ⇡ 0.73 , V` ⇡ 0.069 , se ⇡ �3.6⇥ 10�5 ,
x1
q
⇡ �0.98 , x3

q
⇡ 1.6 , x3

`
⇡ 3.8 , x3

q`
⇡ �2.0 .

(18)

8

K+→π+ νν
R(D(*))

Z→ττ

Since S1 does not mediate di ! dj ¯̀↵`� at tree level, its contributions proportional
to x1

`
and x1

q`
do not give rise to sizeable e↵ects in any observable. For this reason, to

simplify the numerical scan we fix them to be equal to 1.3

We provide here some simplified expressions for the most relevant New Physics e↵ects
in this setup, deferring for details to App. ??:
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where
⇥
LV LL

⌫d

⇤
⌫⌧⌫⌧didj

are theWilson coe�cients of the low-energy operators (⌫̄⌧�µ⌫⌧ )(d̄iL�
µdj

L
).

We see that the leading contribution to s ! dµµ transitions has a phase fixed to
be equal to the SM one, so no large e↵ect in KS ! µµ can be expected. Analogously,
also in s ! d⌫⌫ the new physics coe�cients have the same phase as in the SM, since
the x coe�cients enter with the absolute value squared. We thus expect a linear relation
between KL ! ⇡0⌫⌫ and K+ ! ⇡+⌫⌫, independently on the phases of the couplings. The
same is true for all s ! d transitions. On the other hand, non-trivial phases can appear
in b ! s transitions. Since real couplings are favored by the B-anomalies and since in any
case the phases in Kaon physics observables are fixed by the U(2)5 flavour structure, in
our analysis we only consider real values for all parameters.

3.1 Analysis and discussion

Using the global likelihood presented in Section 2.1 we find the following best-fit point in
parameter space, where the x’s are allowed to vary in the range |x| < 5, while �1(3), V` > 0.

3We checked that, as expected, if left free these parameters have an almost uniform distribution in
the whole range.

8
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Leading effect in Kaon physics
Dominated by tau neutrinos, due to largest couplings.

Figure 2: Results of a parameter scan in the U(2)5 scenario. The green (yellow) points are
within the 68% (95%) CL from the best-fit point.

Therefore, the reason for the inability of the U(2)5-symmetric scenario to address
charged-current anomalies must be found in first-generation constraints, specifically Kaon
physics. Indeed, this can be seen in the first row of Fig. 1, where we observe that the
bounds from K+ ! ⇡+⌫̄⌫, Eq. (15), and ✏K (i.e. ImC1

K
), Eq. (16), in combination with

the constraints on �1,3 from Z ! ⌧̄ ⌧ , Eq. (17), don’t allow the fit to enter the region
preferred by R(D(⇤)), due to the precise relations between couplings to the first and the
second generation, derived from the flavour structure, i.e. Eq. (10). We also observe from
Fig. 1 that values V` ⇡ 0.1 and |se| . 0.02 are preferred, while all the x’s can be of O(1).

Regarding Kaon physics observables, from the bottom row of Fig. 2 we see that
B(K+ ! ⇡+⌫̄⌫) can take all values corrently allowed by the NA62 bound [?] (we show
with vertical lines the best-fit and the ±1� intervals) and therefore any future update on
this observable will put further strong constraints on this scenario. Furthermore, since
the phase in s ! d⌫⌫ is fixed by the corresponding CKM phase, Eq. (15), a linear rela-
tion between this mode and B(KL ! ⇡0⌫̄⌫) is obtained, with values ⇠ 10�10 also for the
latter. This implies that also the end of stage-I of the KOTO experiment won’t be able
to reach the sensitivity to test this model (brown horizontal dotted line). However, the
future sensitivity goals by NA62 (10% [?]) and KOTO at phase-II, or KLEVER, (20% [?])
would be able to completely test this scenario (purple ellipse).
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The NA62 bound is already very constraining for this setup, 
future updated will put even more tension with R(D(*)), 
or eventually a signal could be observed.

G
N

S1+S3, U(2)5

[see: Bordone, Buttazzo, Isidori, Monnard [1705.10729], 
Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006], Fajfer, Kosnik, Vale-Silva [1802.00786]

The correlation in the full model is stronger than just in EFT.

K → π ν ν
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Leading effect in Kaon physics
Dominated by tau neutrinos, due to largest couplings.

Figure 2: Results of a parameter scan in the U(2)5 scenario. The green (yellow) points are
within the 68% (95%) CL from the best-fit point.
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B(K+ ! ⇡+⌫̄⌫) can take all values corrently allowed by the NA62 bound [?] (we show
with vertical lines the best-fit and the ±1� intervals) and therefore any future update on
this observable will put further strong constraints on this scenario. Furthermore, since
the phase in s ! d⌫⌫ is fixed by the corresponding CKM phase, Eq. (15), a linear rela-
tion between this mode and B(KL ! ⇡0⌫̄⌫) is obtained, with values ⇠ 10�10 also for the
latter. This implies that also the end of stage-I of the KOTO experiment won’t be able
to reach the sensitivity to test this model (brown horizontal dotted line). However, the
future sensitivity goals by NA62 (10% [?]) and KOTO at phase-II, or KLEVER, (20% [?])
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The phase of NP contribution is fixed to be SM-like:

As consequence, the KL→π0 mode is fully correlated and 
below the KOTO stage-I final sensitivity.

Since S1 does not mediate di ! dj ¯̀↵`� at tree level, its contributions proportional
to x1

`
and x1

q`
do not give rise to sizeable e↵ects in any observable. For this reason, to

simplify the numerical scan we fix them to be equal to 1.3

We provide here some simplified expressions for the most relevant New Physics e↵ects
in this setup, deferring for details to App. ??:
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|�1|2
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where
⇥
LV LL

⌫d

⇤
⌫⌧⌫⌧didj

are theWilson coe�cients of the low-energy operators (⌫̄⌧�µ⌫⌧ )(d̄iL�
µdj

L
).

We see that the leading contribution to s ! dµµ transitions has a phase fixed to
be equal to the SM one, so no large e↵ect in KS ! µµ can be expected. Analogously,
also in s ! d⌫⌫ the new physics coe�cients have the same phase as in the SM, since
the x coe�cients enter with the absolute value squared. We thus expect a linear relation
between KL ! ⇡0⌫⌫ and K+ ! ⇡+⌫⌫, independently on the phases of the couplings. The
same is true for all s ! d transitions. On the other hand, non-trivial phases can appear
in b ! s transitions. Since real couplings are favored by the B-anomalies and since in any
case the phases in Kaon physics observables are fixed by the U(2)5 flavour structure, in
our analysis we only consider real values for all parameters.

3.1 Analysis and discussion

Using the global likelihood presented in Section 2.1 we find the following best-fit point in
parameter space, where the x’s are allowed to vary in the range |x| < 5, while �1(3), V` > 0.

3We checked that, as expected, if left free these parameters have an almost uniform distribution in
the whole range.
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The NA62 bound is already very constraining for this setup, 
future updated will put even more tension with R(D(*)), 
or eventually a signal could be observed.
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S1+S3, U(2)5

[see: Bordone, Buttazzo, Isidori, Monnard [1705.10729], 
Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006], Fajfer, Kosnik, Vale-Silva [1802.00786]

The correlation in the full model is stronger than just in EFT.

K → π ν ν
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μ → e conversion
μ→e conversion in gold nuclei sets the 
strongest constraint on se.

COMET and Mu2e will push this bound to ~10-16, 
while Mu3e at PSI will push the limit on Br(μ→3e) to ~10-16.

These will set much 
stronger bounds on se, 
or could see a New 
Physics effect.

Naive expectation would be se ∼ √ (me/mµ)~ O(10-2)
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Conclusions
• Flavor anomalies still require data (and theory) to give us a definitive picture. 

 This could potentially be our threshold to an unexpected New Physics sector! 

• S1+S3 scalar leptoquarks offer good solutions to B anomalies (and (g-2)μ), 
   > simplified model is fully calculable 
   > possible UV origin from a Composite Higgs model as pNGB partners of the Higgs. 

•In order to understand the underlying flavour structure  
 we need to connect B-anomalies with other observables.  
   > Rare Kaon decays and μ→e  probes stand out and offer exceptional prospects. 

•The minimally broken U(2)5 flavor symmetry is creates tension between B-anomalies 
and the present NA62 bound on K+→π+νν.

Thank you!
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Backup
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S1 and S3 : R(K(*)) + R(D(*)) + (g-2)μ
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Figure 6: Result from the fit in the S1 + S3
(all) model, aimed at addressing all anomalies (see

description in the text).
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description in the text).

21

Figure 6: Result from the fit in the S1 + S3
(all) model, aimed at addressing all anomalies (see

description in the text).
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R(D(*))

(g-2)µ

No a-priori flavour structure imposed

Very good fit of all anomalies!
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Predictions
The large couplings to τ imply signatures in DY tails of pp→ τ τ, 
deviations in τ LFU tests and τ → μ LFV tests (Belle-II). 

Large effects are also expected in b → s τ τ and b → s τ μ transitions:

Belle-II Belle-II

LHCbLHCb
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From B to K with LQ and U(2)5
We perform a global fit in the U(2)5 flavour structure.

Figure 1: Results of a parameter scan in the U(2)5 scenario. The green (yellow) points are
within the 68% (95%) CL from the best-fit point. In the top row we show 2� constraints from
single observables, where other parameters are fixed to the best-fit point.

Fixing M1 = M3 = 1.1 TeV we get:

best-fit U(2)5 :
�1 ⇡ 0.79 , �3 ⇡ 0.73 , V` ⇡ 0.069 , se ⇡ �3.6⇥ 10�5 ,
x1
q
⇡ �0.98 , x3

q
⇡ 1.6 , x3

`
⇡ 3.8 , x3

q`
⇡ �2.0 .

(18)

We then perform a numerical scan, selecting only points with a ��2 = �2 � �2
best�fit

corresponding to a 68% or 95% confidence level. The results are shown in Fig. 1. In the
top row we also plot the 2� constraints from single observables, obtained by fixing the
parameters not in the plot to the corresponding best-fit values.

In Fig. 2 we show the values of particularly interesting pairs of observables obtained
with the same sets of parameter-space points.

From the top row of Fig. 2 we observe that, while neutral-current B-anomalies can
be addressed entirely, this setup can address R(D(⇤)) only at the 2� level. This situation
should be compared with the result of the analogous similar fit with S1 and S3 with only
couplings to left-handed fermions shown in [1], where both anomalies were satisfied but in
a scenario where couplings to the second generation quarks were compatible with a U(2)5

flavour structure, but couplings to first generation were set to zero.

9

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

https://arxiv.org/abs/2106.15630
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Leading effects in Kaon physics

We also obtain  Br(KL→μe) ~ 10-15 and Br(K+→π+μe) ~ 10-18.
About other Kaon decays:

Also in this case the phase of NP contribution is fixed
to be SM-like

The two channels are fully correlated.

• In KL the model saturates the present bound 

• in KS the effect is ~ 10-13, below the 
SM long-distance contribution (~5×10-12).

Isidori, Unterdorfer [hep-ph/0311084]

D’Ambriosio, Kitahara [1707.06999]
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Goldstone Bosons
G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

resulting massless eigenvalues (i.e. the SM fermions) are partially composite, and a cou-
pling with the Higgs is obtained [93]. On the one hand, this setup usually requires light
composite fermionic top partners [94–96] as well as partners for each SM fermion. On the
other hand, in models with a fundamental fermionic description of the HC sector these
composite fermions are baryonic resonances, which are expected to have a mass near ⇤HC ,
far too heavy to be viable top partners in a partial compositeness setup. Furthermore,
devising a UV completion of this mechanism has proven to be challenging.3

For all these reasons, I assume instead that the bilinears of SM fermions couple to
scalar operators of the strong sector, which at low energy are interpolated by pNGB
fields such as the Higgses or the leptoquarks, as in original Technicolor models [100,101]:
L ⇠

P
 y  ̄SM SMO. These couplings can arise from four-fermion operators with two

SM and two HC-charged fermions:

L4�Fermi ⇠
c  
⇤d�1

t

 ̄SM SM ̄ 
E.⇤HC

�! ⇠ c  f

✓
⇤HC

⇤t

◆d�1

 ̄SM SM
�

f
, (3.1)

where the scaling dimension of the scalar operator ( ̄ ) is given by d = 3 � �, where
� > 0 is the anomalous dimension of the operator. At the scale ⇤t some dynamics
should be responsible for generating these operators. A sizeable part of the Technicolor
(TC) literature focussed on the study of such a dynamics: Extended TC, Walking TC,
etc.. See e.g. Refs. [102, 103] for reviews of this topic and a list of references. For
this first exploration of the model I take a bottom-up approach and do not discuss UV
completions of these operators, leaving it for a future dedicated analysis. Using simply
the NDA estimate of Eq. (2.8) with E4f = 1 one obtains that the final Yukawa coupling
is y � ⇠ O(1).

One of the main problems of such a setup is due to the fact that the dynamics respon-
sible for generating these operators is also likely to produce four-fermion operators of the
form

L4�Fermi �
c  
⇤2

t

 ̄SM SM  ̄SM SM +
c  
⇤2

t

 ̄  ̄ . (3.2)

The e↵ect of ( )4 operators is to generate further e↵ective contributions to the pNGB
masses in Eq. (4.1). Since these pNGB should be heavy enough to pass the phenomeno-
logical constraints, this is not an unwanted feature. On the contrary, if they generate
large enough masses for the singlets pNGBs, it could be possible to eliminate the need of
fundamental HC fermion masses. The ( SM)4 operators, instead, could generate danger-
ous e↵ects in flavour physics (particularly in meson-antimeson mixing and lepton flavour
violating processes).

If the strong sector is close to an interactive IR conformal fixed point above the scale
⇤HC , a sizeable value of the anomalous dimension � could allow to increase the gap
between ⇤HC and ⇤t, thus suppressing the flavour-violating operators. See e.g. Refs. [61,
71, 72] for modern realisations of this idea and for a discussion of the problems one may
encounter in this approach.

3Possible 4d UV completion of the partial compositeness scenario have been obtained by introducing
extra elementary HC-colored scalars [40,86,93] or in a supersymmetric setup [97,98]. Partial composite-
ness also arises naturally in extra-dimensional holographic Higgs models [99].
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Like QCD pions, the pNGB are composite states of HC-fermion bilinears:

D.M. 1803.10972

Two Higgs doublets:        H1,2 ~ (1,2)1/2

Singlet and Triplet LQ:        S1 ~ (3,1)-1/3   +   S3 ~ (3,3)-1/3

Other coloured states:          R2 ~ (3,2)1/6   +   T2 ~ (3,2)-5/6

π̃1 ~ (8,1)0    +    π̃3 ~ (8,3)0

Other electroweak states:          ω ~ (1,1)1   +   ΠL,Q ~ (1,3)0

In terms of SM representations

Three singlets:          η1,2,3  ~  (1,1)0

For energies E ≪ ΛHC the theory is described by a weakly coupled 
effective chiral Lagrangian. 

Structure driven by the symmetries and spurions.

and NHC , the SM gauge couplings can be kept to be perturbative up to the Planck scale.
However, it should be kept in mind that the need to introduce some new dynamics slightly
above the scale ⇤HC , in order to generate the top Yukawa and the leptoquark couplings,
is expected to alter the RG evolution of the gauge couplings.

2.1 Condensate and pNGBs

This theory is expected to form a condensate [9–11]

h ̄i ji = �B0f
2�ij . (3)

Since the total number of flavors is 10, in the absence of SM gauging and other explicit
breakings the global symmetry group of the theory is G = SU(10)L ⇥ SU(10)R ⇥ U(1)X ,
spontaneously broken to the diagonal subgroup H = SU(10)D⇥U(1)X . This spontaneous
symmetry breaking generates a set of 99 (real) pseudo Nambu-Goldstone bosons (pNGB)
transforming in the adjoint of SU(10)D. Under GSM = SU(3)c⇥SU(2)w⇥U(1)Y they are
arranged in the following irreps:

valence irrep. valence irrep. d.o.f.
H1 = ( ̄L N) (1,2)1/2 Hc

2
= ( ̄L E) (1,2)�1/2 4 + 4

!± = ( ̄N E) (1,1)�1 ⇧L = ( ̄L�a L) (1,3)0 2 + 3
S1 = ( ̄Q L) (3̄,1)1/3 S3 = ( ̄Q�a L) (3̄,3)1/3 6 + 18
R̃2 = ( ̄Q E) (3̄,2)�1/6 T2 = ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 = ( ̄QTA Q) (8,1)0 ⇡̃3 = ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q = ( ̄Q�a Q) (1,3)0 ⌘i = 3⇥ ( ̄i i) (1,1)0 3 + 3

. (4)

In particular, we see that the pNGB include two Higgs doublets H1,2 as well as the two
leptoquarks S1,3.

All the pNGB can be described in terms of the matrix U [�(x)],

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (5)

where f is the NGB decay constant and T ↵ are the SU(10) generators normalised as
Tr[T ↵T �] = 1

2
�↵�. The complete list is provided in App. A.1. The pNGB matrix U

transforms under G as U ! gLUg†R. The connection between the basis of pNGB fields �↵

and the one into SM irreducible representations is given in App. A.3.
In order to estimate the size of various operators in the low energy chiral Lagrangian,

we assume NDA power counting [12] opportunely extended to the fermion sector (see
e.g. [13]):

L
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◆E� ✓gVµ

⇤
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and compositeness scales. Also, in this case ΛHC could be generated by the soft breaking

of the conformal symmetry due to the HC-fermion masses, thus potentially explaining dy-

namically the approximate coincidence between ΛHC and mΨ. Perturbative computations

suggest that for GHC = SU(3) the strong dynamics has a strongly coupled IR fixed point in

the window 9 ≤ NF ≤ 16 [68], which includes this setup. See also refs. [74–81] for lattice

studies for different values of the number of flavours.

2.2 Condensate and pNGBs

This theory is expected to form a condensate [82–84]

〈Ψ̄iΨj〉 = −B0f
2δij , (2.4)

where B0 is a non-perturbative constant (see e.g. refs. [85, 86] for the QCD case), which

in the QCD case is approximately given by B0 ≈ 20f . For NHC = 3 and NF = 10 also the

condition quoted in ref. [87] for the condensate to form is satisfied.

This condensate spontaneously breaks the global symmetry G, eq. (2.2), to the diagonal

subgroup

G = SU(10)L × SU(10)R ×U(1)HB → H = SU(10)D ×U(1)HB , (2.5)

generating a set of 99 real pNGBs transforming in the adjoint of SU(10)D. They can be

described in terms of the matrix U(φ) ≡ u(φ)2,

U [φ(x)] = exp

(
2i
φα(x)

f
Tα
)
, (2.6)

transforming under (gL, gR) ∈ G as U → gRUg†L [88, 89]. In the expression above, f is the

NGB decay constant and Tα are the SU(10) generators normalised as Tr[TαT β ] = 1
2δ
αβ .

The complete list of generators and the SM embedding is detailed in appendix C.1. The

pNGBs are arranged into representations of GSM = SU(3)c × SU(2)w × U(1)Y as (see

appendix C.2 for details):

valence irrep. valence irrep. d.o.f.

H1 ∼ iσ2(Ψ̄LΨN ) (1,2)1/2 H2 ∼ (Ψ̄EΨL) (1,2)1/2 4 + 4

S1 ∼ (Ψ̄QΨL) (3̄,1)1/3 S3 ∼ (Ψ̄QσaΨL) (3̄,3)1/3 6 + 18

ω± ∼ (Ψ̄NΨE) (1,1)−1 ΠL ∼ (Ψ̄LσaΨL) (1,3)0 2 + 3

R̃2 ∼ (Ψ̄EΨQ) (3,2)1/6 T2 ∼ (Ψ̄QΨN ) (3̄,2)5/6 12 + 12

π̃1 ∼ (Ψ̄QTAΨQ) (8,1)0 π̃3 ∼ (Ψ̄QTAσaΨQ) (8,3)0 8 + 24

ΠQ ∼ (Ψ̄QσaΨQ) (1,3)0 ηi ∼ 3× cai (Ψ̄aΨa) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general

bottom-up study of composite Higgs models with two Higgs doublets can be found in

ref. [90].
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ΠQ ∼ (Ψ̄QσaΨQ) (1,3)0 ηi ∼ 3× cai (Ψ̄aΨa) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general

bottom-up study of composite Higgs models with two Higgs doublets can be found in

ref. [90].
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studies for different values of the number of flavours.

2.2 Condensate and pNGBs
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where B0 is a non-perturbative constant (see e.g. refs. [85, 86] for the QCD case), which
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described in terms of the matrix U(φ) ≡ u(φ)2,

U [φ(x)] = exp

(
2i
φα(x)

f
Tα
)
, (2.6)

transforming under (gL, gR) ∈ G as U → gRUg†L [88, 89]. In the expression above, f is the
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Yukawas & LQ couplings
Coupling with SM fermions from 4-Fermi operators

SM Yukawas + LQ couplings arise from the same UV dynamics
A new sector responsible for these operators is necessary (as Extended Technicolor)
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3.1 HC-fermion bilinears

I construct the coupling of the SM fermions to the two Higgses and the S1,3 scalar lepto-

quarks via operators like ψ̄SMψSMΨ̄iΨj , where Ψ̄Ψj interpolates the pNGBs below ΛHC.

In general, both baryon (B) and lepton (L) numbers are broken by adding non-

renormalizable operators (as happens in the SM EFT). In order to avoid proton decay

and other unwanted effects, one could impose B and L conservation in the operators at

the scale Λt while assigning suitable quantum numbers to the HC fermions.5 Focussing in

particular on the ψ̄SMψSMΨ̄Ψ effective operators, an equally successful but more minimal

requirement is to impose conservation of a combination of B and L, such as for example

F+ = 3B + L or F− = 3B − L. Requiring only that the operators generating the Higgs

Yukawa couplings and the S1,3 leptoquark couplings to SM fermions are allowed provides

the following charge assignment for the HC fermions:

F+(ΨL) = F+(ΨN ) = F+(ΨE) = FL , F+(ΨQ) = FL + 2 , (3.7)

where FL is an arbitrary charge. Assuming F− conservation, instead, all HC fermions

should have the same (arbitrary) F− charge.

The complete list of possible ψ̄SMψSMΨ̄Ψ operators compatible with gauge symmetries

and F± conservation, given the assignment of eq. (3.7), is (schematically):

(
q̄LuR + d̄RqL + ēRlL

) (
Ψ̄NΨL

)
,

(
q̄LuR + d̄RqL + ēRlL

) (
Ψ̄LΨE

)
,

(q̄cLlL + ēcRuR)
(
Ψ̄QΨL

)
, (q̄cLσ

alL)
(
Ψ̄Qσ

aΨL
)
,

(3.8)

where all indices have been suppressed. Comparing the HC bilinears with eq. (2.7), one

recognises the Yukawa couplings for the two Higgs doublets in the first line, while the

second line corresponds to the desired couplings of the S1,3 leptoquarks to SM fermions.

Note that, given the assumptions above, also a coupling of S1 with right-handed fermions

ēcRuR is allowed.

The remaining scalar operators, allowed by gauge symmetries but forbidden by F±
conservation, are

(q̄cLqL + ūcRdR)
(
Ψ̄LΨQ

)
,

(
d̄RlL

) (
Ψ̄EΨQ

)
,

(
l̄cLlL

) (
Ψ̄EΨN

)
, (3.9)

corresponding to couplings of the S1,3 to diquark, of R̃2 to quarks and leptons, and of ω to

di-leptons. It is remarkable that, once the F± quantum numbers are assigned to the HC

fermions to allow the desired Higgs and LQ couplings, automatically the B and L-violating

operators are forbidden and none of the other pNGBs is allowed to have a linear coupling

to SM fermions.6

For each of the interactions in eq. (3.8) it is clearly possible to write two independent

terms, one for each chiral structure of the HC bilinears: Ψ̄i,LΨj,R or Ψ̄i,RΨj,L. By com-

paring Green functions in the high- and low-energy theory it is easily shown that the HC

5For the purpose of this paper I neglect the non-perturbative breaking of B + L.
6On the contrary, requiring only B − L conservation would allow also the coupling of S1,3 to diquark,

which would mediate proton decay.
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(
Ψ̄QΨL

)
, (q̄cLσ

alL)
(
Ψ̄Qσ

aΨL
)
,

(3.8)

where all indices have been suppressed. Comparing the HC bilinears with eq. (2.7), one

recognises the Yukawa couplings for the two Higgs doublets in the first line, while the

second line corresponds to the desired couplings of the S1,3 leptoquarks to SM fermions.

Note that, given the assumptions above, also a coupling of S1 with right-handed fermions
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Scalar Potential: NDA + symmetry

The gauge contribution is positive and is larger for colored states. 
EW charges give subleading corrections.

Their transformation properties under SU(10)L ⇥ SU(10)R are

G
L,R
X ! gL,R G

L,R
X g†L,R . (4.7)

Since the HC theory is vectorlike, the left and right spurions are identical. The leading
operator in the chiral Lagrangian built with these spurions is

VG = �
3f 2⇤2

HC

16⇡2

X

X

cXTr
⇥
G
L
XUG

R
XU

†⇤ = 3⇤2
HC

16⇡2

X

i,↵

cig
2
iC

i
2(�

↵) (�↵)2 +O(�3) , (4.8)

where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has

VG �
3⇤2

HC

8⇡2

✓
3

4
cwg

2
w +

1

4
cY g

2
Y

◆�
|H1|

2 + |H2|
2
�
+ . . . (4.9)

For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:

�m2
! ⇡ (0.05⇤HC)

2 , �m2
H1,2

⇡ (0.08⇤HC)
2 , �m2

⇧L,Q
⇡ (0.13⇤HC)

2 ,

�m2
S1

⇡ (0.17⇤HC)
2 , �m2

S3
⇡ (0.21⇤HC)

2 . �m2
R̃2,T2

⇡ (0.19⇤HC)
2 .

�m2
⇡̃1

⇡ (0.26⇤HC)
2 , �m2

⇡̃3
⇡ (0.28⇤HC)

2 ,

(4.10)

For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is

Vt = �
y2tNcf 2⇤2

HC

16⇡2
ct
X

i

����
1

2
p
2
Tr

⇥
(�i

H1
��i

H2
)(U � U †)

⇤����
2

� �
cty2tNc⇤2

HC

16⇡2
|H1 �H2|

2 +O(�3)
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7C2(F) =
N

2�1
2N for the fundamental and C2(Adj) = N for the adjoint of SU(N), while it corresponds

to Y 2 under U(1)Y .

16

~ 1 of SU(3)c

ΛHC ~ 4πf ≳ 10 TeV

~ 3 of SU(3)c

~ 8 of SU(3)c

4.1 Potential from the HC fermion masses

The contribution to the pNGB potential from the explicit breaking due to the HC fermion
masses is controlled by the spurion M and the leading chiral operator describing this is
given in Eq. (2.9). Upon expanding U in powers of pNGBs one gets the mass terms which,
for the non-singlets pNGB is

m2
( ̄i j)

= B0(mi +mj) , (4.1)

where i, j = Q,L,N,E represent the valence fundamental HC fermion constituting the
pNGB, according to Eq. (2.7). I recall that mN = mE to avoid custodial symmetry
breaking. In particular, the contribution to the two Higgs doublets mass is

Vm = �
f 2

4
Tr[U †�+ �†U ] � B0(mE +mL)(|H1|

2 + |H2|
2) . (4.2)

In order to obtain the singlets masses one needs the expression of the 3 Cartan generators
of SU(10)D transforming as singlets of GSM . They are given in Appendix C, Eq. (C.9).
In the unbroken EW symmetry limit one gets:

m2
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A , (4.3)

where in general ⌘2 and ⌘3 mix with each other. For mE = mL the mixing vanishes and:

m2
⌘1 = m2

⌘2 = 2B0mL , m2
⌘3 =

2

5
B0(3mL + 2mQ) . (4.4)

Since this is the only contribution to the three singlets masses, the fundamental HC-
fermion masses are required in order to make them heavy enough to pass phenomenological
bounds (discussed in Section 6.3). A possible alternative could be if a su�ciently large
contribution is generated via the 1

⇤2
t

 4 operators as mentioned in Section 3. The e↵ect of

these operators in the potential has been briefly considered in Ref. [61], where it is argued
to be suppressed.

4.2 Potential from the SM gauging

The explicit breaking of the global symmetry G due to the gauging of the SM subgroup is
analogous to the one due to the QED gauging in the QCD chiral Lagrangian, responsible
for the ⇡± - ⇡0 mass splitting. It can be described in terms of spurions, defined from the
SM gauge interactions of the HC fermion currents, Eq. (2.1):
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L,R are the generators of G, and the various G↵
X are

the spurions. They represent the embedding of the SM gauging within G (see App. C.1
for the explicit expression). One can define the generators associated with a given SM
gauge field as the combinations:
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has
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For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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to Y 2 under U(1)Y .
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where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:
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where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.

4.4 Electroweak Symmetry Breaking and Higgs mass

For what concerns the dynamics of EWSB, this model reduces to the SU(4)L⇥SU(4)R !

SU(4)D case studied in Ref. [68]. In fact, neither the LQ nor the other pNGB with valence
 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
of this discussion, of which I summarise here only the main aspects.

In the notation used until here, the two Higgs doublets,H1,2 = (H+
1,2, H

0
1,2)

T , are related
directly to the valence HC fermions and embedded in the pNGB matrix U ⌘ exp(i⇧) as
(see App. C for this definition)
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where I focussed only on the lower 4 ⇥ 4 block and set to zero the other fields. A more
convenient basis in the two Higgs doublets for studying EWSB is the one adopted in
Ref. [68]:

H1 =
iH̃1 + H̃2

p
2

, H2 =
�iH̃1 + H̃2

p
2

. (4.14)

Under PH one has H̃1 ! H̃1 and H̃2 ! �H̃2. In this notation the field which takes the
vev is hH̃1i = (0, vh/

p
2)T , corresponding to ✓ = vh/

p
2f in Eq. (2.10). Indeed, since the

negative top quark loop contribution to the Higgs potential, Eq. (4.11), is exactly along
the direction |H1 �H2|

2 = 2|H̃1|
2, this is the field which takes a vev. The physical fields

from the two Higgs doublets are

H̃1 =

✓
G+,

vh + h+ iG0

p
2

◆T

, H̃2 =

✓
H+,

h2 + iA0
p
2

◆T

, (4.15)

where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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NDA + spurion analysis

The pNGB potential arises at 1-loop from all the explicit breaking terms
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Figure 1: Example of a possible spectrum of the theory.

6 Collider phenomenology

In this section I present the phenomenological aspects of the model more relevant for LHC
new physics searches.

6.1 Possible spectrum

While the non-perturbative character of the dynamics underlying the model does not allow
to make precise predictions for the spectrum of the theory, one can use the pNGB potential
and NDA estimates detailed in Section 4 to sketch what a typical pNGB spectrum might
be like.

For definitiveness in the following I fix

⇠ = 0.05 (f = 1.1 TeV) , (6.1)

corresponding to ⇤HC ⇠ 13 TeV. In the simplifying limit mE = mL, Eq. (4.21) relates
the Higgs mass and ⇠ to the mass of the first two singlets m⌘1,2 =

p
2B0mL = 790 GeV.

Using the QCD value B0 ⇡ 20f , one gets mL ⇡ 14 GeV. The third singlet mass is m⌘3 =

m⌘1,2

q
3+2mQ/mL

5 , which can be larger than the other two for mQ > mL, reaching 1 TeV

for mQ ⇡ 2.5mL. The mass of the heavy Higgses before EWSB is given by Eq. (4.23),
mH̃2

⇠ 1.9 TeV. For the other pNGBs I combine the contributions from the HC-fermion
masses, Eq. (4.1), and from the SM gauging, Eq. (4.10). In the case of the S1,3 leptoquarks
I also take into account the contribution from the four-fermion operators, Eq. (4.12),
assumed to be negative. All the other composite resonances (composite vectors, scalars,
HC-baryons, etc.) are expected to be near the ⇤HC scale, i.e. above 10 TeV. Finally, the
sector responsible for generating the four-fermion operators is expected to be not too far
above that scale, unless the theory enters a conformal window above ⇤HC . The resulting
spectrum is sketched in Fig. 1. The reader should keep in mind that this must be taken
with a grain of salt, since O(1) deviations from NDA are expected.

In the limit of unbroken EW symmetry, ✓ ! 0, the only pNGB which mix with each
other are the two singlets ⌘2 and ⌘3, Eq. (4.3), where the mixing is proportional to the
HC fermion mass di↵erence mE�mL. For ✓ > 0, also a small mixing between the ⇧0

L and
the ⌘1 singlet arises, proportional to / (cwg2w � cY g2Y ) sin

2 ✓, as well as between S1, 13
and

S3, 13
(proportionally to / cY g2Y (1� cos ✓)) and between R̃2, 13

and T2, 13
(proportionally to

/ cwg2w(1�cos ✓)). With the specific choice of keeping only the pseudo-scalar combination
in the HC bilinears in the four-fermion operators, no other mixing terms is present. In
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2.2 Condensate and pNGBs

This theory is expected to form a condensate [81–83]

h ̄i ji = �B0f
2�ij , (2.4)

where B0 is a non-perturbative constant (see e.g. Refs. [84,85] for the QCD case), which
in the QCD case is approximately given by B0 ⇡ 20f . For NHC = 3 and NF = 10 also
the condition quoted in Ref. [86] for the condensate to form is satisfied.

This condensate spontaneously breaks the global symmetry G, Eq. (2.2), to the diag-
onal subgroup

G = SU(10)L ⇥ SU(10)R ⇥ U(1)HB ! H = SU(10)D ⇥ U(1)HB , (2.5)

generating a set of 99 real pNGBs transforming in the adjoint of SU(10)D. They can be
described in terms of the matrix U(�) ⌘ u(�)2,

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (2.6)

transforming under (gL, gR) 2 G as U ! gRUg†L [87,88]. In the expression above, f is the
NGB decay constant and T ↵ are the SU(10) generators normalised as Tr[T ↵T �] = 1

2�
↵�.

The complete list of generators and the SM embedding is detailed in App. C.1. The
pNGBs are arranged into representations of GSM = SU(3)c ⇥ SU(2)w ⇥ U(1)Y as (see
App. C.2 for details):

valence irrep. valence irrep. d.o.f.
H1 ⇠ i�2( ̄L N) (1,2)1/2 H2 ⇠ ( ̄E L) (1,2)1/2 4 + 4
S1 ⇠ ( ̄Q L) (3̄,1)1/3 S3 ⇠ ( ̄Q�a L) (3̄,3)1/3 6 + 18
!±

⇠ ( ̄N E) (1,1)�1 ⇧L ⇠ ( ̄L�a L) (1,3)0 2 + 3
R̃2 ⇠ ( ̄E Q) (3,2)1/6 T2 ⇠ ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 ⇠ ( ̄QTA Q) (8,1)0 ⇡̃3 ⇠ ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q ⇠ ( ̄Q�a Q) (1,3)0 ⌘i ⇠ 3⇥ cai ( ̄a a) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general
bottom-up study of composite Higgs models with two Higgs doublets can be found in
Ref. [89].

In order to estimate the size of various operators in the low energy chiral Lagrangian, I
assume näıve dymensional analysis (NDA) as the power counting scheme [90], opportunely
extended to the fermion sector (see e.g. Ref. [91]):

L
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⇠ ⇤2f 2

✓
⇤

4⇡f

◆2L ✓�a

f

◆E� ✓gVµ
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◆EV
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p
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◆E ✓@µ
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◆d ⇣m 

⇤

⌘�✓gf

⇤

◆2µ ✓g f

⇤

◆E4f

,

(2.8)
where ⇤ ⇠ g⇤f ⇠ 4⇡f , L counts the loop level at which the operator is generated, E�,V, 

count the insertions of pions, elementary SM gauge bosons and fermions, d counts the
derivatives and � the mass insertions. Finally, µ � 0 takes into account if some operator
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4.1 Potential from the HC fermion masses

The contribution to the pNGB potential from the explicit breaking due to the HC fermion
masses is controlled by the spurion M and the leading chiral operator describing this is
given in Eq. (2.9). Upon expanding U in powers of pNGBs one gets the mass terms which,
for the non-singlets pNGB is

m2
( ̄i j)

= B0(mi +mj) , (4.1)

where i, j = Q,L,N,E represent the valence fundamental HC fermion constituting the
pNGB, according to Eq. (2.7). I recall that mN = mE to avoid custodial symmetry
breaking. In particular, the contribution to the two Higgs doublets mass is

Vm = �
f 2

4
Tr[U †�+ �†U ] � B0(mE +mL)(|H1|

2 + |H2|
2) . (4.2)

In order to obtain the singlets masses one needs the expression of the 3 Cartan generators
of SU(10)D transforming as singlets of GSM . They are given in Appendix C, Eq. (C.9).
In the unbroken EW symmetry limit one gets:

m2
⌘1 = 2B0mE , M2

⌘2,⌘3 =

0

@ B0(mE +mL) �

q
3
5B0(mE �mL)

�

q
3
5B0(mE �mL)

1
5B0(3mE + 3mL + 4mQ)

1

A , (4.3)

where in general ⌘2 and ⌘3 mix with each other. For mE = mL the mixing vanishes and:

m2
⌘1 = m2

⌘2 = 2B0mL , m2
⌘3 =

2

5
B0(3mL + 2mQ) . (4.4)

Since this is the only contribution to the three singlets masses, the fundamental HC-
fermion masses are required in order to make them heavy enough to pass phenomenological
bounds (discussed in Section 6.3). A possible alternative could be if a su�ciently large
contribution is generated via the 1

⇤2
t

 4 operators as mentioned in Section 3. The e↵ect of

these operators in the potential has been briefly considered in Ref. [61], where it is argued
to be suppressed.

4.2 Potential from the SM gauging

The explicit breaking of the global symmetry G due to the gauging of the SM subgroup is
analogous to the one due to the QED gauging in the QCD chiral Lagrangian, responsible
for the ⇡± - ⇡0 mass splitting. It can be described in terms of spurions, defined from the
SM gauge interactions of the HC fermion currents, Eq. (2.1):
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L,R are the generators of G, and the various G↵
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the spurions. They represent the embedding of the SM gauging within G (see App. C.1
for the explicit expression). One can define the generators associated with a given SM
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Their transformation properties under SU(10)L ⇥ SU(10)R are

G
L,R
X ! gL,R G

L,R
X g†L,R . (4.7)

Since the HC theory is vectorlike, the left and right spurions are identical. The leading
operator in the chiral Lagrangian built with these spurions is
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has
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For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:
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(4.10)

For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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(4.11)

7C2(F) =
N

2�1
2N for the fundamental and C2(Adj) = N for the adjoint of SU(N), while it corresponds

to Y 2 under U(1)Y .
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where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:
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(c1g21 + cu1g
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|S1|

2
�

c3g23⇤
2
HC

8⇡2
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2 +O(�3) , (4.12)

where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.

4.4 Electroweak Symmetry Breaking and Higgs mass

For what concerns the dynamics of EWSB, this model reduces to the SU(4)L⇥SU(4)R !

SU(4)D case studied in Ref. [68]. In fact, neither the LQ nor the other pNGB with valence
 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
of this discussion, of which I summarise here only the main aspects.

In the notation used until here, the two Higgs doublets,H1,2 = (H+
1,2, H

0
1,2)

T , are related
directly to the valence HC fermions and embedded in the pNGB matrix U ⌘ exp(i⇧) as
(see App. C for this definition)

⇧4⇥4(H) =

p
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0 0 �H�
1 H0

2

H0
1 �H+

1 0 0
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2 H0⇤
2 0 0

1

CCA , (4.13)

where I focussed only on the lower 4 ⇥ 4 block and set to zero the other fields. A more
convenient basis in the two Higgs doublets for studying EWSB is the one adopted in
Ref. [68]:

H1 =
iH̃1 + H̃2

p
2

, H2 =
�iH̃1 + H̃2

p
2

. (4.14)

Under PH one has H̃1 ! H̃1 and H̃2 ! �H̃2. In this notation the field which takes the
vev is hH̃1i = (0, vh/

p
2)T , corresponding to ✓ = vh/

p
2f in Eq. (2.10). Indeed, since the

negative top quark loop contribution to the Higgs potential, Eq. (4.11), is exactly along
the direction |H1 �H2|

2 = 2|H̃1|
2, this is the field which takes a vev. The physical fields

from the two Higgs doublets are

H̃1 =

✓
G+,

vh + h+ iG0

p
2

◆T

, H̃2 =

✓
H+,

h2 + iA0
p
2

◆T

, (4.15)

where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is

Vt = �
y2tNcf 2⇤2

HC

16⇡2
ct
X

i

����
1

2
p
2
Tr

⇥
(�i

H1
��i

H2
)(U � U †)

⇤����
2

� �
cty2tNc⇤2

HC

16⇡2
|H1 �H2|

2 +O(�3)

(4.11)

7C2(F) =
N

2�1
2N for the fundamental and C2(Adj) = N for the adjoint of SU(N), while it corresponds

to Y 2 under U(1)Y .

16

NDA + spurion analysis

The pNGB potential arises at 1-loop from all the explicit breaking terms

Scalar Potential: NDA + symmetry

pNGB spectrum: example


