

A clear trend...

Why?

This renewed interest is mostly data-driven!

(see talks by V. Lisovskyi and L. Silvestrini)

Compilation of clean observables testing the b \rightarrow s $\mu\mu$ transition. 10/2021

This renewed interest is mostly data-driven!

(see talks by V. Lisovskyi and L. Silvestrini)

This renewed interest is mostly data-driven!

$\mathbf{R}(\mathbf{D}^{(*)}): \boldsymbol{b} \to \boldsymbol{c} \boldsymbol{\tau} \boldsymbol{v}$

(see talks by V. Lisovskyi and L. Silvestrini)

This renewed interest is mostly data-driven!

$\mathbf{R}(\mathbf{D}^{(*)}): \boldsymbol{b} \to \boldsymbol{c} \boldsymbol{\tau} \boldsymbol{v}$

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-fermion only at loop level.

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-fermion only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

Deviations in **semileptonic** processes, strong bounds from $\Delta F=2$ & CLFV processes.

LQ induce semileptonic @ tree level, 4-quark & 4-fermion only at loop level.

>> Very strong bounds on LQ couplings to 1st generation fermions, e.g. $K_L \rightarrow \mu$ e, etc..

To address both B-anomalies:

(see talk by C. Cornella)

TeV-scale leptoquark coupled to 3rd and 2nd generation g(3rd) > g(2nd) > g(1st)

From Leptoquarks to the Higgs, and back

From B-anomalies

Hierarchical couplings to SM fermions

From Leptoquarks to the Higgs, and back

From B-anomalies

Higgs & EW hierarchy

M_{LQ} ~ TeV

MBSM-Higgs hierarchy problem ∼ TeV

Hierarchical couplings to SM fermions

Hierarchical Yukawa couplings

$$y(3rd) > y(2nd) > y(1st)$$

From Leptoquarks to the Higgs, and back

From B-anomalies

Higgs & EW hierarchy

M_{LQ} ~ TeV

MBSM-Higgs hierarchy problem ~ TeV

Hierarchical couplings to SM fermions

Hierarchical Yukawa couplings

$$y(3rd) > y(2nd) > y(1st)$$

LQ from same UV responsible for the EW scale, connection between LQ couplings and Yukawa couplings.

Scalar LQ & Higgs: both pseudo-Goldstones?

In Composite Higgs models the Higgs arises as a pseudo-Goldstone (pNGB) of a spontaneously broken global symmetry G → H of a TeV-scale strong sector

Spontaneous global symmetry breaking at the $f \sim 1 \text{ TeV}$ scale

$$G \rightarrow H$$

One obtains naturally

$$m_{PNGB} \ll M_{Resonances}$$

Scalar LQ & Higgs: both pseudo-Goldstones?

Scalar LQs could arise as pNGB together with the Higgs from the same G/H of the strong sector.

[Gripaios 0910.1789, Gripaios, Nardecchia, Renner 1412.1791]

Low-energy phenomenology dominated by the LQs

$$m_{SLQ} \ll \Lambda$$

Having the same origin, it is expected that LQ couplings have same structure as Higgs Yukawa couplings: possible connection with flavour structure

D.M. 1803.10972

Gauge group: $SU(N_{HC}) \times SU(3)_c \times SU(2)_w \times U(1)_Y$

"HyperColor"

Extra vectorlike fermions charged under SU(*NHC*):

	$SU(N_{HC})$	$SU(3)_c$	$SU(2)_w$	$U(1)_Y$
$\overline{\Psi_L}$	$ m N_{HC}$	1	2	Y_L
Ψ_N	${f N_{HC}}$	1	${f 1}$	$Y_L + 1/2$
Ψ_E	${f N_{HC}}$	1	$oldsymbol{1}$	$Y_L - 1/2$
Ψ_Q	${f N_{HC}}$	3	2	$Y_L - 1/3$

For similar constructions see: Shmaltz et al 1006.1356, Vecchi 1506.00623, Ma, Cacciapaglia 1508.07014

 $SU(N_{HC})$ confines at $\Lambda_{HC} \sim 10~\text{TeV}$

Approximate global symmetry, spontaneously broken (as chiral symm. in QCD)

$$G = SU(10)_{L} \times SU(10)_{R} \times U(1)_{V} \xrightarrow{f \sim 1 \text{TeV}} H = SU(10)_{V} \times U(1)_{V}$$

$$\langle \bar{\Psi}_{i} \Psi_{j} \rangle = -B_{0} f^{2} \delta_{ij}$$

$$\mathbf{G} = \mathbf{SU}(10)_{L} \times \mathbf{SU}(10)_{R} \times \mathbf{U}(1)_{V} \xrightarrow{\langle \bar{\Psi}_{i} \Psi_{j} \rangle = -B_{0} f^{2} \delta_{ij}} \mathbf{H} = \mathbf{SU}(10)_{V} \times \mathbf{U}(1)_{V}$$

Like QCD pions, the pNGB are composite states of HC-fermion bilinears: $\Psi\Psi$

$$\mathbf{G} = \mathbf{SU}(10)_{L} \times \mathbf{SU}(10)_{R} \times \mathbf{U}(1)_{V} \xrightarrow{\langle \bar{\Psi}_{i} \Psi_{j} \rangle = -B_{0} f^{2} \delta_{ij}} \mathbf{H} = \mathbf{SU}(10)_{V} \times \mathbf{U}(1)_{V}$$

Like QCD pions, the pNGB are composite states of HC-fermion bilinears: $\Psi\Psi$

Several states are present at the TeV scale as pNGB, including

Two Higgs doublets: H_{SM} , $\tilde{H}_2 \sim (1,2)_{1/2}$

Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_1 \sim (3,3)_{-1/3}$

H and LQ are close partners!!

$$H_1 \sim i\sigma^2(\bar{\Psi}_L\Psi_N)$$
 $H_2 \sim (\bar{\Psi}_E\Psi_L)$
 $S_1 \sim (\bar{\Psi}_Q\Psi_L)$
 $S_3 \sim (\bar{\Psi}_Q\sigma^a\Psi_L)$

$$\mathbf{G} = \mathbf{SU}(10)_{L} \times \mathbf{SU}(10)_{R} \times \mathbf{U}(1)_{V} \xrightarrow{\langle \bar{\Psi}_{i} \Psi_{j} \rangle = -B_{0} f^{2} \delta_{ij}} \mathbf{H} = \mathbf{SU}(10)_{V} \times \mathbf{U}(1)_{V}$$

Like QCD pions, the pNGB are composite states of HC-fermion bilinears: $\Psi\Psi$

Several states are present at the TeV scale as pNGB, including

Two Higgs doublets: H_{SM} , $\tilde{H}_2 \sim (1,2)_{1/2}$

Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_1 \sim (3,3)_{-1/3}$

H and LQ are close partners!!

$$H_1 \sim i\sigma^2(\bar{\Psi}_L\Psi_N)$$
 $H_2 \sim (\bar{\Psi}_E\Psi_L)$
 $S_1 \sim (\bar{\Psi}_Q\Psi_L)$
 $S_3 \sim (\bar{\Psi}_Q\sigma^a\Psi_L)$

Coupling with SM fermions from 4-fermion operators

$$\mathcal{L}_{4-\mathrm{Fermi}} \sim \frac{c_{\psi\Psi}}{\Lambda_t^2} \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \bar{\Psi} \Psi \stackrel{E \lesssim \Lambda_{HC}}{\longrightarrow} \sim y_{\psi\phi} \, \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \, \phi + \dots \qquad \begin{array}{c} \text{Yukawas \& } \\ \text{LQ couplings} \end{array}$$

+ approximate U(2)⁵ flavor symmetry to protect from unwanted flavor violation

Phenomenology of S₁ and S₃

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC...

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{1L} q_{i}^{i} \varepsilon l_{i}^{j} + \lambda_{ij}^{1R} u_{k}^{i} e_{k}^{i}\right) S_{1} + \lambda_{ij}^{3L} q_{i}^{i} \varepsilon c^{\Lambda} l_{i}^{j} S_{3}^{\Lambda} + h.c.$$

1) Match **SM** + **S**₁+**S**₃ to **SMEFT** @ 1-loop

(SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature)

V. Gherardi, E. Venturini, D.M. [2003.12525] (see talk by F. Wilsch)

[Alonso, Jenkins, Manohar, Trott '13] [Dekens, Stoffer 1908.05295] [Jenkins, Manohar, Stoffer 1711.05270]

Phenomenology of S₁ and S₃

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC...

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{1L} q_{i}^{i} \varepsilon l_{i}^{j} + \lambda_{ij}^{1R} u_{k}^{i} e_{k}^{i}\right) S_{1} + \lambda_{ij}^{3L} q_{i}^{i} \varepsilon c^{\Lambda} l_{i}^{j} S_{3}^{\Lambda} + h.c.$$

- 1) Match SM + S₁+S₃ to SMEFT @ 1-loop (SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature) V. Gherardi, E. Venturini, D.M. [2003.12525] [Dekens, Stoffer 1908.05295] (see talk by F. Wilsch) [Jenkins, Manohar, Stoffer 1711.05270]
- 2) Global analysis of B-anomalies + all relevant observables V. Gherardi, E. Venturini, D.M. [2008.09548]

Phenomenology of S₁ and S₃

Crivellin et al. 1703.09226; Buttazzo, Greljo, Isidori, DM 1706.07808; D.M. 1803.10972; Arnan et al 1901.06315; Bigaran et al. 1906.01870; Crivellin et al. 1912.04224; Saad 2005.04352; V. Gherardi, E. Venturini, D.M. 2003.12525, 2008.09548; Bordone, Catà, Feldmann, Mandal 2010.03297; Crivellin et al. 2010.06593, 2101.07811; S. Trifinopoulos, E. Venturini, D.M. [2106.15630]; ETC...

$$\mathcal{L}_{int} \sim \left(\lambda_{ij}^{1L} q_{i}^{i} \varepsilon l_{i}^{j} + \lambda_{ij}^{1R} u_{k}^{i} e_{k}^{i}\right) S_{1} + \lambda_{ij}^{3L} q_{i}^{i} \varepsilon c^{A} l_{i}^{j} S_{3}^{A} + h.c.$$

- 1) Match SM + S₁+S₃ to SMEFT @ 1-loop (SMEFT RGE, SMEFT-LEFT 1-loop matching, LEFT RGE already done in literature)

 V. Gherardi, E. Venturini, D.M. [2003.12525]

 (see talk by F. Wilsch)

 [Alonso, Jenkins, Manohar, Trott '13]
 [Dekens, Stoffer 1908.05295]
 [Jenkins, Manohar, Stoffer 1711.05270]
- 2) Global analysis of B-anomalies + all relevant observables V. Gherardi, E. Venturini, D.M. [2008.09548]
- 3) Include 1st gen couplings and study Kaon & $\mu \to e$ observables assuming U(2)⁵ flavor symmetry.

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

S₁ and S₃ - global analysis

Using the complete one-loop matching to SMEFT, we include in our analysis the following observables.

All these are used to build a global likelihood.

$$-2\log\mathcal{L}\equiv\chi^2(\lambda_x,M_x)=\sum_irac{\left(\mathcal{O}_i(\lambda_x,M_x)-\mu_i
ight)^2}{\sigma_i^2}$$

Observable	Experimental bounds
Z boson couplings	App. A.12
$\delta g^Z_{\mu_L}$	$(0.3 \pm 1.1)10^{-3} [99]$
$\delta g^Z_{\mu_R}$	$(0.2 \pm 1.3)10^{-3} [99]$
$\delta g^Z_{ au_L}$	$(-0.11 \pm 0.61)10^{-3} [99]$
$\delta g^Z_{ au_R}$	$(0.66 \pm 0.65)10^{-3} [99]$
$\delta g^Z_{b_L}$	$(2.9 \pm 1.6)10^{-3} [99]$
$\delta g^Z_{c_R}$	$(-3.3 \pm 5.1)10^{-3} [99]$
$N_{ u}$	$2.9963 \pm 0.0074 $ [100]

Observable	SM prediction	Experimental bounds
$b \to s\ell\ell$ observables		[37]
$\Delta \mathcal{C}_9^{sb\mu\mu}$	0	-0.43 ± 0.09 [79]
$\mathcal{C}_9^{\mathrm{univ}}$	0	-0.48 ± 0.24 [79]
$b \to c\tau(\ell)\nu$ observables		[37]
R_D	0.299 ± 0.003 [12]	$0.34 \pm 0.027 \pm 0.013$ [12]
R_D^*	0.258 ± 0.005 [12]	$0.295 \pm 0.011 \pm 0.008$ [12]
$R_D^* \ P_{ au}^{D^*} \ F_L$	-0.488 ± 0.018 [80]	$-0.38 \pm 0.51 \pm 0.2 \pm 0.018$ [7]
F_L	0.470 ± 0.012 [80]	$0.60 \pm 0.08 \pm 0.038 \pm 0.012$ [81]
$\mathcal{B}(B_c^+ \to \tau^+ \nu)$	2.3%	< 10% (95% CL) [82]
$R_D^{\mu/e}$	1	$0.978 \pm 0.035 \; [83, 84]$
$b \to s\nu\nu$ and $s \to d\nu\nu$		[37]
$R_K^ u$	1 [85]	< 4.7 [86]
$R_{K^*}^ u$	1 [85]	< 3.2 [86]
$b \to d\mu\mu$ and $b \to dee$		App. A.5
$\mathcal{B}(B^0 \to \mu\mu)$	$(1.06 \pm 0.09) \times 10^{-10}$ [87, 88]	$(1.1 \pm 1.4) \times 10^{-10} [89, 90]$
$\mathcal{B}(B^+ o \pi^+ \mu \mu)$	$(2.04 \pm 0.21) \times 10^{-8} [87, 88]$	$(1.83 \pm 0.24) \times 10^{-8} [89, 90]$
$\mathcal{B}(B^0 o ee)$	$(2.48 \pm 0.21) \times 10^{-15} [87, 88]$	$< 8.3 \times 10^{-8} $ [51]
$\mathcal{B}(B^+ \to \pi^+ ee)$	$(2.04 \pm 0.24) \times 10^{-8} [87, 88]$	$< 8 \times 10^{-8} $ [51]
B LFV decays		[37]
${\cal B}(B_d o au^\pm\mu^\mp)$	0	$< 1.4 \times 10^{-5}$ [91]
$\mathcal{B}(B_s o au^\pm \mu^\mp)$	0	$< 4.2 \times 10^{-5}$ [91]
$\mathcal{B}(B^+ o K^+ au^- \mu^+)$	0	$< 5.4 \times 10^{-5}$ [92]
$\mathcal{B}(B^+ \to K^+ \tau^+ \mu^-)$	0	$< 3.3 \times 10^{-5}$ [92]
$\mathcal{B}(\mathcal{D} \to \mathcal{H} + \mu)$	U	$< 4.5 \times 10^{-5} [93]$

Observable	SM prediction	Experimental bounds
D leptonic decay		[37] and App. A.4
${\cal B}(D_s o au u)$	$(5.169 \pm 0.004) \times 10^{-2} [94]$	$(5.48 \pm 0.23) \times 10^{-2} [51]$
$\mathcal{B}(D^0 o \mu\mu)$	$\approx 10^{-11} [95]$	$< 7.6 \times 10^{-9} [96]$
$\mathcal{B}(D^+ \to \pi^+ \mu \mu)$	$\mathcal{O}(10^{-12}) \ [97]$	$< 7.4 \times 10^{-8} [98]$
Rare Kaon decays $(\nu\nu)$		App. A.1
$\mathcal{B}(K^+ o \pi^+ \nu \nu)$	$8.64 \times 10^{-11} [99]$	$(11.0 \pm 4.0) \times 10^{-11} [100]$
${\cal B}(K_L o\pi^0 u u)$	3.4×10^{-11} [99]	$< 3.6 \times 10^{-9} [101]$
Rare Kaon decays $(\ell\ell)$		App. A.3 and A.2
${\cal B}(K_L o \mu\mu)_{SD}$	$8.4 \times 10^{-10} \ [102]$	$< 2.5 \times 10^{-9} [76]$
$\mathcal{B}(K_S o \mu \mu)$	$(5.18 \pm 1.5) \times 10^{-12} [76, 103, 104]$	$< 2.5 \times 10^{-10} [105]$
${\cal B}(K_L o\pi^0\mu\mu)$	$(1.5 \pm 0.3) \times 10^{-11} [106]$	$< 4.5 \times 10^{-10} [107]$
$\mathcal{B}(K_L o \pi^0 ee)$	$(3.2^{+1.2}_{-0.8}) \times 10^{-11} [108]$	$< 2.8 \times 10^{-10} [109]$
LFV in Kaon decays		App. A.3 and A.2
${\cal B}(K_L o \mu e)$	0	$< 4.7 \times 10^{-12} [110]$
${\cal B}(K^+ o\pi^+\mu^-e^+)$	0	$< 7.9 \times 10^{-11} [111]$
${\cal B}(K^+ o\pi^+e^-\mu^+)$	0	$< 1.5 \times 10^{-11} [112]$
CP-violation		App. A.8
ϵ_K'/ϵ_K	$(15 \pm 7) \times 10^{-4} [113]$	$(16.6 \pm 2.3) \times 10^{-4} [51]$

Observable	SM prediction	Experimental bounds	
$\Delta F = 2$ processes	SWI prediction	[37]	
$B^0 - \overline{B}^0$: $ C_{B_d}^1 $	0	$< 9.1 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$B_s^0 - \overline{B}_s^0$: $ C_{B_d}^0 $	0	$< 3.1 \times 10^{-5} \text{ TeV} = [114, 115]$ $< 2.0 \times 10^{-5} \text{ TeV}^{-2} [114, 115]$	
$K^0 - \overline{K}^0$: Re $[C_K^1]$		$< 2.0 \times 10^{-7} \text{ TeV} = [114, 115]$	
$K^0 - \overline{K}^0$: $\operatorname{Im}[C_K^1]$	0		
$K^{\circ} - K : \operatorname{Im}[C_K]$	0	$< 3.0 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Re $[C_D^1]$	0	$< 3.6 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Im[C_D^1]	0	$< 2.2 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Re[C_D^4]	0	$< 3.2 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Im[C_D^4]	0	$< 1.2 \times 10^{-9} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Re $[C_D^5]$	0	$< 2.7 \times 10^{-7} \text{ TeV}^{-2} [114, 115]$	
$D^0 - \overline{D}^0$: Im $[C_D^5]$	0	$< 1.1 \times 10^{-8} \text{ TeV}^{-2} [114, 115]$	
LFU in τ decays		[37]	
$ g_{\mu}/g_e ^2$	1	1.0036 ± 0.0028 [116]	
$ g_ au/g_\mu ^2$	1	1.0022 ± 0.0030 [116]	
$ g_{ au}/g_e ^2$	1	1.0058 ± 0.0030 [116]	
LFV observables		[37]	
$\mathcal{B}(au o\mu\phi)$	0	$< 1.00 \times 10^{-7} [117]$	
$\mathcal{B}(\tau \to 3\mu)$	0	$< 2.5 \times 10^{-8} [118]$	
$\mathcal{B}(\tau \to \mu \gamma)$	0	$< 5.2 \times 10^{-8} [119]$	
$\mathcal{B}(\tau \to e\gamma)$	0	$< 3.9 \times 10^{-8} [119]$	
$\mathcal{B}(\mu \to e\gamma)$	0	$< 5.0 \times 10^{-13} [120]$	
$\mathcal{B}(\mu \to 3e)$	0	$< 1.2 \times 10^{-12} $ [121]	
$\mathcal{B}_{\mu e}^{ ext{(Ti)}}$	0	$< 5.1 \times 10^{-12} $ [122]	
$\mathcal{B}_{\mu e}^{ ext{(Au)}}$	0	$< 8.3 \times 10^{-13} $ [123]	
EDMs		[37]	
$ d_e $	$< 10^{-44} \mathrm{e} \cdot \mathrm{cm} [124, 125]$	$< 1.3 \times 10^{-29} \mathrm{e \cdot cm} [126]$	
$ d_{\mu} $	$< 10^{-42} \mathrm{e} \cdot \mathrm{cm} [125]$	$< 1.9 \times 10^{-19} \mathrm{e \cdot cm} [127]$	
$d_{ au}$	$< 10^{-41} \mathrm{e} \cdot \mathrm{cm} [125]$	$(1.15 \pm 1.70) \times 10^{-17} \mathrm{e} \cdot \mathrm{cm} [37]$	
d_n	$< 10^{-33} \mathrm{e\cdot cm} [128]$	$< 2.1 \times 10^{-26} e \cdot cm \ [129]$	
Anomalous		[37]	
Magnetic Moments	100 10-13 [100 101]	(0.0 0.0) 10-13 [100]	
$a_e - a_e^{SM}$	$\pm 2.3 \times 10^{-13} [130, 131]$	$(-8.9 \pm 3.6) \times 10^{-13} [132]$	
$a_{\mu}-a_{\mu}^{SM}$	$\pm 43 \times 10^{-11} [42]$	$(279 \pm 76) \times 10^{-11} [40, 42]$	
$a_{ au} - a_{ au}^{SM}$	$\pm 3.9 \times 10^{-8} \ [130]$	$(-2.1 \pm 1.7) \times 10^{-7} [133]$	

S₁ and S₃ — only LH couplings

 $\lambda^{1R} = 0 \rightarrow \text{Cannot fit } (g-2)_{\mu}$

(see backup slides for a S_1+S_3 scenario that addresses also the muon magnetic moment)

$R(D^{(*)})$

Model $S_1 + S_3^{(LH)}$

 $b \rightarrow s \mu\mu$

S₁ and S₃ — only LH couplings

$$\lambda^{12} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5t \\ 0 & 0 & bt \end{pmatrix} \quad \lambda^{32} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5t & 5t \\ 0 & bt & bt \end{pmatrix}$$

 \rightarrow Cannot fit $(g-2)_{\mu}$

(see backup slides for a S₁+S₃ scenario that addresses also the muon magnetic moment)

$R(D^{(*)})$

 $\lambda^{1R} = 0$

Model $S_1 + S_3^{(LH)}$

 $b \rightarrow s \mu\mu$

very good fit of B-anomalies

S₁ and S₃ — only LH couplings

0.02

$$\lambda^{1l} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 5t \\ 0 & 0 & bt \end{pmatrix} \quad \lambda^{3l} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 5t & 5t \\ 0 & bt & bt \end{pmatrix} \quad 0.08$$

$$\lambda^{1R} = 0 \quad \rightarrow \quad \text{Cannot fit } (g-2)_{\mu} \qquad 0.04$$

(see backup slides for a S₁+S₃ scenario that

addresses also the muon magnetic moment)

 $R(D^{(*)})$

$$b \to s \, \mu \mu$$
 The relation between couplings to s-quark and b-quark is compatible with a $U(2)^5$ flavour symmetry, that would predict:

See also Buttazzo, Greljo, Isidori, D.M. 1706.07808

1.0

 $\lambda_{\mathrm{b} au}^{1\,L}$

1.5

2.0

Model $S_1 + S_3^{(LH)}$

Plots updated w.r.t. [v3:2008.09548]

0.5

0.0

A hint for a flavor struture: U(2)⁵

In first approximation only the 3rd generation couples to the Higgs.

In this case the theory enjoys a U(2)⁵ global symmetry

$$G_F = U(2)_q \times U(2)_\ell \times U(2)_u \times U(2)_d \times U(2)_e$$

Barbieri et al. [1105.2296, 1203.4218, 1211.5085]

The minimal breaking of this symmetry to reproduce the SM Yukawas is described by a set of spurions:

$$Y_{u,d} \sim \begin{pmatrix} \Delta_{u,d} & V_q \\ 0 & 0 & 1 \end{pmatrix} \qquad Y_e \sim \begin{pmatrix} \Delta_e & V_\ell \\ 0 & 0 & 1 \end{pmatrix}$$

Diagonalizing quark masses, the V_q doublet spurion is fixed to be $\mathbf{V}_q=\kappa_q(V_{td}^*,V_{ts}^*)^T$ See also Fuentes-Martin, Isidori, Pagès, Yamamoto [1909.02519] $\kappa_q \sim O(1)$

U(2)⁵ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$\lambda^{1(3)}L \sim \begin{pmatrix} V_{q}^{*} \\ V_{\ell} \end{pmatrix} \text{ i.e. } \lambda^{1(3)}L = \lambda^{1(3)}\begin{pmatrix} \chi_{q\ell}^{1(3)} & \chi_{\ell}^{1(3)} & \chi_{\ell}^{1(3)}$$

U(2)⁵ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$\lambda^{1(3)L} \sim \begin{pmatrix} V_{q}^{*} \\ V_{\ell} \end{pmatrix} \text{ i.e. } \lambda^{1(3)L} = \lambda^{1(3)} \begin{pmatrix} \chi_{q\ell}^{1(3)} & \chi_{q\ell}^{1$$

 \sqrt{g} : leptonic doublet spurion

 $V_{\rm g}$: leptonic doublet spurion $S_{\rm e} = S_{\rm in} \, \partial_{\rm e}$: rotation diagonalizing electrons and muon masses $Arbitrary\ parameters$

 $x^{1(3)}$: O(1) arbitrary complex parameters.

U(2)⁵ flavour symmetry and leptoquarks

Applying the same symmetry assumptions to the leptoquark couplings to SM fermions we get a structure:

$$\lambda^{1(3)}L \sim \begin{pmatrix} V_{q} \\ V_{\ell} \\ \end{pmatrix} \times V_{\ell} \qquad V_{\ell} \qquad V_{q} \\ \end{pmatrix} \text{ i.e. } \lambda^{1(3)}L = \lambda^{1(3)} \begin{pmatrix} X_{q_{\ell}}^{1(3)} & S_{\ell} & V_{\ell} & V_{q_{\ell}}^{1(3)} & V_{\ell} & V_{q_{\ell}}^{1(3)} & V_{\ell} \\ X_{q_{\ell}}^{1(3)} & S_{\ell} & V_{\ell} & V_{q_{\ell}}^{1(3)} & V_{\ell} & V_{q_{\ell}}^{1(3)} & V_{\ell} \\ X_{\ell}^{1(3)} & S_{\ell} & V_{\ell} & X_{\ell}^{1(3)} & V_{\ell} & X_{q_{\ell}}^{1(3)} & V_{\ell} \\ X_{\ell}^{1(3)} & S_{\ell} & V_{\ell} & X_{\ell}^{1(3)} & V_{\ell} & X_{q_{\ell}}^{1(3)} & V_{\ell} \\ \end{pmatrix} \begin{array}{c} \text{dl.} \\ \text{SL.} \\ \text{bl.} \\ \end{pmatrix}$$

 $\sqrt{\mathbf{l}}$: leptonic doublet spurion

 V_{ℓ} : leptonic doublet spurion $S_{\ell} = S_{\ell} v \partial_{\ell}$: rotation diagonalizing electrons and muon masses Arbitrary parameters

 $x^{1(3)}$: O(1) arbitrary complex parameters.

$$\chi_{dd}^{1(3)L} = \chi_{sd}^{1(3)L} \frac{V_{td}}{V_{ts}}$$

$$\chi_{ie}^{1(3)L} = \chi_{i\mu}^{1(3)L} \frac{V_{td}}{V_{ts}}$$

$$\chi_{ie}^{1(3)L} = \chi_{i\mu}^{1(3)L} \frac{V_{td}}{V_{ts}}$$

Exact relations (selection rules)

Global analysis with U(2)⁵ s.

S. Trifinopoulos, E. Venturini, D.M. [2106.15630]

We perform a global fit in the U(2)⁵ flavour structure.

The parameters are consistent with the symmetry: all x's are O(1), $V_{\ell} \sim 0.1$, $|s_e| \leq 0.02$

We perform a global fit in the U(2)⁵ flavour structure.

The parameters are consistent with the symmetry: all x's are O(1), $V_{\ell} \sim 0.1$, $|s_e| \leq 0.02$

b→ sµµ can be addressed:

Global analysis with U(2)⁵

We perform a global fit in the U(2)⁵ flavour structure.

The parameters are consistent with the symmetry: all x's are O(1), $V_{\ell} \sim 0.1$, $|s_e| \leq 0.02$

b→ sµµ can be addressed:

R(D^(*)) instead can only be addressed at 2σ:

Global analysis with U(2)⁵

This is due to the combination of the constraints from $Z \rightarrow \tau\tau$ and $K^+ \rightarrow \pi^+ \nu\nu$

Leading effect in Kaon physics

$K \rightarrow \pi \nu \nu$

Dominated by tau neutrinos, due to largest couplings.

The **NA62** bound is already very constraining for this setup, future updated will put even more tension with $R(D^{(*)})$, or eventually a signal could be observed.

The correlation in the full model is stronger than just in EFT.

[see: Bordone, Buttazzo, Isidori, Monnard [1705.10729], Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006], Fajfer, Kosnik, Vale-Silva [1802.00786]

Leading effect in Kaon physics

$K \rightarrow \pi \nu \nu$

Dominated by tau neutrinos, due to largest couplings.

The **NA62** bound is already very constraining for this setup, future updated will put even more tension with $R(D^{(*)})$, or eventually a signal could be observed.

The correlation in the full model is stronger than just in EFT.

[see: Bordone, Buttazzo, Isidori, Monnard [1705.10729], Borsato, Gligorov, Guadagnoli, Martinez Santos, Sumensari [1808.02006], Fajfer, Kosnik, Vale-Silva [1802.00786]

The **phase of NP** contribution is **fixed** to be SM-like:

$$C_{\text{SIN, N}} \approx V_{td}^* V_{ts} \left(\frac{|\lambda^1|^2 |x_q^1|^2}{2M_1^2} + \frac{|\lambda^3|^2 |x_q^3|^2}{2M_3^2} \right)$$

As consequence, the $K_L \rightarrow \pi^0$ mode is fully correlated and below the KOTO stage-I final sensitivity.

µ → e conversion

 μ → e conversion in gold nuclei sets the strongest constraint on s_e .

COMET and Mu2e will push this bound to ~10-16, while Mu3e at PSI will push the limit on $Br(\mu \rightarrow 3e)$ to ~10-16.

These will set much stronger **bounds on se**, or could see a New Physics effect.

0.04 0.02 $s_e = 0.00$ -0.02-0.040.20.3

Naive expectation would be $s_e \sim \sqrt{(m_e/m_\mu)} \sim O(10^{\text{-}2})$

Conclusions

- Flavor anomalies still require data (and theory) to give us a definitive picture.

 This could potentially be our threshold to an unexpected New Physics sector!
- S₁+S₃ scalar leptoquarks offer good solutions to B anomalies (and (g-2)_μ),
 - > simplified model is fully calculable
 - > possible UV origin from a Composite Higgs model as pNGB partners of the Higgs.
- In order to understand the underlying flavour structure
 we need to connect B-anomalies with other observables.
 - > Rare Kaon decays and $\mu \rightarrow e$ probes stand out and offer exceptional prospects.
- •The minimally broken U(2)⁵ flavor symmetry is creates tension between **B-anomalies** and the present NA62 bound on K+ $\rightarrow \pi$ +vv.

Thank you!

Backup

S_1 and S_3 : $R(K^{(*)}) + R(D^{(*)}) + (g-2)_{\mu}$

No a-priori flavour structure imposed

$$\lambda^{12} = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 5\% \\
0 & b\mu & b\gamma
\end{pmatrix}$$

$$\lambda^{3l} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & SH & ST \\
0 & SH & bT
\end{pmatrix}$$

$$\lambda^{1R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & Ct \\ 0 & t\mu & tr \end{pmatrix}$$

R(D(*))

Very good fit of all anomalies!

Predictions

The large couplings to τ imply signatures in **DY tails of pp** \to τ τ , deviations in τ **LFU** tests and τ \to μ **LFV** tests (Belle-II).

Large effects are also expected in $b \rightarrow s \tau \tau$ and $b \rightarrow s \tau \mu$ transitions:

From B to K with LQ and U(2)⁵

We perform a global fit in the U(2)⁵ flavour structure.

$$M_1 = M_3 = 1.1 \text{ TeV}$$

Leading effects in Kaon physics

Also in this case the phase of NP contribution is fixed to be SM-like

$$\Delta C_9^{sd\mu\mu} = -\Delta C_{10}^{sd\mu\mu} \approx \frac{\pi V_{ts}^* V_{td}}{\sqrt{2} G_F \alpha} \frac{|\lambda^3|^2 |V_\ell|^2 |x_{q\ell}^3|^2}{M_3^2}$$

The two channels are fully correlated.

• In K_L the model saturates the present bound

Isidori, Unterdorfer [hep-ph/0311084]

• in **Ks** the effect is ~ **10**-13, below the SM long-distance contribution (~5×10-12).

D'Ambriosio, Kitahara [1707.06999]

About other Kaon decays:

We also obtain $Br(K_L \rightarrow \mu e) \sim 10^{-15}$ and $Br(K^+ \rightarrow \pi^+ \mu e) \sim 10^{-18}$.

Goldstone Bosons

D.M. 1803.10972

$$G = SU(10)_L \times SU(10)_R \times U(1)_V$$

$$\frac{\langle \bar{\Psi}_i \Psi_j \rangle = -B_0 f^2 \delta_{ij}}{\longrightarrow} \quad \mathbf{H} = \mathbf{H} = \mathbf{H} \cdot \mathbf{H} = \mathbf{H} \cdot \mathbf{H} \cdot \mathbf{H} = \mathbf{H} \cdot \mathbf$$

$$H = SU(10)_{V} \times U(1)_{V}$$

Like QCD pions, the pNGB are composite states of HC-fermion bilinears:

In terms of SM representations

Two Higgs doublets: $H_{1,2} \sim (1,2)_{1/2}$

Singlet and Triplet LQ: $S_1 \sim (3,1)_{-1/3} + S_3 \sim (3,3)_{-1/3}$

Three singlets: $\eta_{1,2,3} \sim (1,1)_0$

Other electroweak states: $\omega \sim (1,1)_1 + \Pi_{L,Q} \sim (1,3)_0$

Other coloured states: $R_2 \sim (3,2)_{1/6} + T_2 \sim (3,2)_{-5/6}$

$$\tilde{\pi}_1 \sim (8,1)_0 + \tilde{\pi}_3 \sim (8,3)_0$$

H and LQ are close partners!!

$$H_1 \sim i\sigma^2(\bar{\Psi}_L \Psi_N)$$

$$H_2 \sim (ar{\Psi}_E \Psi_L)$$

$$S_1 \sim (\bar{\Psi}_Q \Psi_L)$$

$$S_3 \sim (\bar{\Psi}_Q \sigma^a \Psi_L)$$

For energies $E \ll \Lambda_{HC}$ the theory is described by a weakly coupled effective chiral Lagrangian.

Structure driven by the symmetries and spurions.

Yukawas & LQ couplings

Coupling with SM fermions from 4-Fermi operators

$$\mathcal{L}_{4-\mathrm{Fermi}} \sim \frac{c_{\psi\Psi}}{\Lambda_{\star}^2} \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \bar{\Psi} \Psi \stackrel{E \lesssim \Lambda_{HC}}{\longrightarrow} \sim y_{\psi\phi} \, \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \, \phi + \dots$$

$$\Lambda_t \gtrsim \Lambda_{HC}$$

SM Yukawas + LQ couplings arise from the same UV dynamics

A new sector responsible for these operators is necessary (as Extended Technicolor)

Scalar operators allowed by gauge-invariance

Higgses Yukawas
$$\left(ar{q}_L u_R + ar{d}_R q_L + ar{e}_R l_L
ight)\left(ar{\Psi}_N \Psi_L
ight) \ \left(ar{q}_L u_R + ar{d}_R q_L + ar{e}_R l_L
ight)\left(ar{\Psi}_L \Psi_E
ight)$$

$$S_1$$
 and S_3 couplings $(ar{q}_L^c l_L + ar{e}_R^c u_R) \left(ar{\Psi}_Q \Psi_L
ight) \ (ar{q}_L^c \sigma^a l_L) \left(ar{\Psi}_Q \sigma^a \Psi_L
ight)$

$$S_1$$
 coupling to diquark $(\bar{q}_L^c q_L + \bar{u}_R^c d_R) (\bar{\Psi}_L \Psi_Q)$

w coupling to dilepton
$$(ar{l}_L^c l_L) \left(ar{\Psi}_E \Psi_N \right)$$

$$ilde{\mathsf{R}}_2$$
 coupling $\left(ar{d}_R l_L\right) \left(ar{\Psi}_E \Psi_Q\right)$

Assuming conservation of this symmetry $F_+=3B+L$ so that Yukawas and LQ coupl. allowed all other couplings are forbidden. $F_+(\Psi_L)=F_+(\Psi_N)=F_+(\Psi_E)=F_L\,, \qquad F_+(\Psi_Q)=F_L+2$

Scalar Potential: NDA + symmetry

The pNGB potential arises at 1-loop from all the explicit breaking terms

NDA + spurion analysis

$$m_{(\bar{\Psi}_i\Psi_j)}^2 = B_0(m_i + m_j)$$

$$V_{\mathcal{G}} = -\frac{3f^2\Lambda_{HC}^2}{16\pi^2} \sum_{X} c_X \operatorname{Tr} \left[\mathcal{G}_X^L U \mathcal{G}_X^R U^{\dagger} \right]$$

$$V_t = -\frac{c_t y_t^2 N_c \Lambda_{HC}^2}{16\pi^2} |H_1 - H_2|^2$$

$$V_{LQ} = -\frac{(c_1 g_1^2 + c_1^u g_1^{u2}) \Lambda_{HC}^2}{8\pi^2} |S_1|^2 - \frac{c_3 g_3^2 \Lambda_{HC}^2}{8\pi^2} |S_3|^2$$

The gauge contribution is positive and is larger for colored states.

EW charges give subleading corrections.

$$\begin{split} \Delta m_{\omega}^2 &\approx (0.05\Lambda_{HC})^2 \;, \quad \Delta m_{H_{1,2}}^2 \approx (0.08\Lambda_{HC})^2 \;, \quad \Delta m_{\Pi_{L,Q}}^2 \approx (0.13\Lambda_{HC})^2 \;, \quad \text{1 of SU(3)}_{\text{c}} \\ \Delta m_{S_1}^2 &\approx (0.17\Lambda_{HC})^2 \;, \quad \Delta m_{S_3}^2 \approx (0.21\Lambda_{HC})^2 \;, \quad \Delta m_{\tilde{R}_2,T_2}^2 \approx (0.19\Lambda_{HC})^2 \;, \quad \text{3 of SU(3)}_{\text{c}} \\ \Delta m_{\tilde{\pi}_1}^2 &\approx (0.26\Lambda_{HC})^2 \;, \quad \Delta m_{\tilde{\pi}_3}^2 \approx (0.28\Lambda_{HC})^2 \;, \quad \text{8 of SU(3)}_{\text{c}} \end{split}$$

 $\Lambda_{HC} \sim 4\pi f \approx 10 \text{ TeV}$

Scalar Potential: NDA + symmetry

The pNGB potential arises at 1-loop from all the explicit breaking terms

NDA + spurion analysis

$$m_{(\bar{\Psi}_i \Psi_j)}^2 = B_0(m_i + m_j)$$

$$V_{\mathcal{G}} = -\frac{3f^2\Lambda_{HC}^2}{16\pi^2} \sum_{X} c_X \text{Tr} \left[\mathcal{G}_X^L U \mathcal{G}_X^R U^{\dagger} \right]$$

	$(c, a^2 \perp c^u a^{u2}) \Lambda^2$	$c_{2}a^{2}\Lambda^{2}$
$V_{\rm LQ} = -$	$-\frac{(c_1g_1+c_1g_1)^{11}HC}{ S_1 ^2}$	$-\frac{c_3 g_3 n_{HC}}{ S_2 ^2}$
	$-\frac{(c_1g_1^2 + c_1^ug_1^{u2})\Lambda_{HC}^2}{8\pi^2} S_1 ^2 -$	$8\pi^2$

 $V_t = -\frac{c_t y_t^2 N_c \Lambda_{HC}^2}{16\pi^2} |H_1 - H_2|^2$

valence	irrep.	valence	irrep.
$H_1 \sim i\sigma^2(\bar{\Psi}_L \Psi_N)$	$({f 1},{f 2})_{1/2}$	$H_2 \sim (\bar{\Psi}_E \Psi_L)$	$\overline{({f 1},{f 2})_{1/2}}$
$S_1 \sim (\bar{\Psi}_Q \Psi_L)$	$({f ar 3},{f 1})_{1/3}$	$S_3 \sim (\bar{\Psi}_Q \sigma^a \Psi_L)$	$(\mathbf{ar{3}},3)_{1/3}$
$\omega^{\pm} \sim (\bar{\Psi}_N \Psi_E)$	$({f 1},{f 1})_{-1}$	$\Pi_L \sim (\bar{\Psi}_L \sigma^a \Psi_L)$	$({f 1},{f 3})_0$
$ ilde{R}_2 \sim (ar{\Psi}_E \Psi_Q)$	$({f 3},{f 2})_{1/6}$	$T_2 \sim (\bar{\Psi}_Q \Psi_N)$	$(\mathbf{ar{3}},2)_{5/6}$
$\tilde{\pi}_1 \sim (\bar{\Psi}_Q T^A \Psi_Q)$	$({f 8},{f 1})_0$	$\tilde{\pi}_3 \sim (\bar{\Psi}_Q T^A \sigma^a \Psi_Q)$	$({f 8},{f 3})_0$
$\Pi_Q \sim (\bar{\Psi}_Q \sigma^a \Psi_Q)$	$({f 1},{f 3})_0$	$\eta_i \sim 3 \times c_i^a (\bar{\Psi}_a \Psi_a)$	$(1,1)_0$

