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Why a unification-based theory of flavour?
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The SM is a very complicated QFT.

• 3 gauge couplings, non-abelian and abelian forces

• 5 (6 inc. 𝜐𝑅) fermions in “weird” representations (for one generation)

• 3 generations; Yukawa structure

• Higgs mechanism in electroweak sector gives weak, short-range forces

• Confinement of QCD in the IR

Unification of forces and/or matter attempts to explain all (or part of) this structure 
as a consequence of something simpler at high energies.
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There are two GUTs (one gauge coupling) that don’t require extra fermions:

• SU(5) Ψ~ 𝟓⨁𝟏𝟎⨁𝟏

• SO(10) Ψ~𝟏𝟔
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There are two GUTs (one gauge coupling) that don’t require extra fermions:

• SU(5) Ψ~ 𝟓⨁𝟏𝟎⨁𝟏 ⨁3

• SO(10) Ψ~ 𝟏𝟔 ⨁3

But these say nothing about flavour
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There are two GUTs (one gauge coupling) that don’t require extra fermions:

• SU(5) Ψ~ 𝟓⨁𝟏𝟎⨁𝟏 ⨁3

• SO(10) Ψ~ 𝟏𝟔 ⨁3

Q: can we unify either SU(5) or SO(10) with flavour, 

thereby explaining the origin of three generations?
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There are two GUTs (one gauge coupling) that don’t require extra fermions:

• SU(5) Ψ~ 𝟓⨁𝟏𝟎⨁𝟏 ⨁3

• SO(10) Ψ~ 𝟏𝟔 ⨁3

Q: can we unify either SU(5) or SO(10) with flavour, 

thereby explaining the origin of three generations?

A: No! (at least not without extra fermions)
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Georgi, 1975, and Fritzsch, Minkowski, 1975 

Georgi, Glashow, 1974
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A provocative claim:

“If we want to unify the three generations of matter, 
we must forgo the complete unification of forces.”
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If we want to unify gauge and flavour symmetries, it turns out all roads go through Pati-Salam
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Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Pati, Salam, 1974
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𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

1. Colour flavour unification:

𝑆𝑈 12 × 𝑆𝑈 2 × 𝑆𝑈 2
Ψ𝐿~ 𝟏𝟐, 𝟐, 𝟏 , Ψ𝑅~ 𝟏𝟐, 𝟏, 𝟐

𝐺𝐹 = 𝑆𝑈 3
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𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

1. Colour flavour unification:

𝑆𝑈 12 × 𝑆𝑈 2 × 𝑆𝑈 2
Ψ𝐿~ 𝟏𝟐, 𝟐, 𝟏 , Ψ𝑅~ 𝟏𝟐, 𝟏, 𝟐

2. Electroweak flavour unification:

𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑝 6 1

𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑂 6
Ψ𝐿~ 𝟒, 𝟔, 𝟏 , Ψ𝑅~ 𝟒, 𝟏, 𝟔

𝐺𝐹 = 𝑆𝑂 3 × 𝑆𝑂 3

Reminder:
The Lie group 𝑆𝑝 6 is a subgroup of 𝑆𝑈 6 :

𝑆𝑝 6 = 𝑈 ∈ 𝑆𝑈 6 |𝑈𝑇Ω𝑈 = Ω , where Ω =
0 𝐼3
−𝐼3 0

1This gauge group was in fact written down by Kuo and Nakagawa in 1984
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𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

1. Colour flavour unification:

𝑆𝑈 12 × 𝑆𝑈 2 × 𝑆𝑈 2
Ψ𝐿~ 𝟏𝟐, 𝟐, 𝟏 , Ψ𝑅~ 𝟏𝟐, 𝟏, 𝟐

2. Electroweak flavour unification:

𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑝 6
𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑂 6

Ψ𝐿~ 𝟒, 𝟔, 𝟏 , Ψ𝑅~ 𝟒, 𝟏, 𝟔

These are the only gauge-flavour unified groups with just 2 Ψs, assuming no BSM Weyls

See Allanach, Gripaios, Tooby-Smith, 2104.14555
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𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

1. Colour flavour unification:

𝑆𝑈 12 × 𝑆𝑈 2 × 𝑆𝑈 2
Ψ𝐿~ 𝟏𝟐, 𝟐, 𝟏 , Ψ𝑅~ 𝟏𝟐, 𝟏, 𝟐

2. Electroweak flavour unification:

𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑝 6
𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑂 6

Ψ𝐿~ 𝟒, 𝟔, 𝟏 , Ψ𝑅~ 𝟒, 𝟏, 𝟔

E.g. Lepton-flavoured 
gauge symmetries that 
stabilize the proton
(See Admir’s talk)

JD, Greljo, Eller Thomsen, 2202.05275

These are the only gauge-flavour unified groups with just 2 Ψs, assuming no BSM Weyls

See Allanach, Gripaios, Tooby-Smith, 2104.14555
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𝑃𝑆 = 𝑆𝑈 4 × 𝑆𝑈 2 × 𝑆𝑈 2 × 𝐺𝐹

Ψ𝐿~ 𝟒, 𝟐, 𝟏 ⨁3, Ψ𝑅~ 𝟒, 𝟏, 𝟐 ⨁3

1. Colour flavour unification:

𝑆𝑈 12 × 𝑆𝑈 2 × 𝑆𝑈 2
Ψ𝐿~ 𝟏𝟐, 𝟐, 𝟏 , Ψ𝑅~ 𝟏𝟐, 𝟏, 𝟐

2. Electroweak flavour unification:

𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑝 6
𝑆𝑈 4 × 𝑆𝑝 6 × 𝑆𝑂 6

Ψ𝐿~ 𝟒, 𝟔, 𝟏 , Ψ𝑅~ 𝟒, 𝟏, 𝟔

This talk

These are the only gauge-flavour unified groups with just 2 Ψs, assuming no BSM Weyls

See Allanach, Gripaios, Tooby-Smith, 2104.14555



Summarize our motivations:

1. Unification of quarks & leptons

2. Unification of 3 generations

3. The challenge: can we also explain the peculiar structure in fermion masses and mixings?

15
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Let’s build a model of flavour.
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Embedding the SM fields

Embed SM chiral fermions in 2 fields:

Ψ𝐿~ 𝟒, 𝟔, 𝟏 ~

𝑢1
𝑟 𝑢2

𝑟 𝑢3
𝑟

𝑢1
𝑔

𝑢2
𝑔

𝑢3
𝑔

𝑑1
𝑟 𝑑2

𝑟 𝑑3
𝑟

𝑑1
𝑔

𝑑2
𝑔

𝑑3
𝑔

𝑢1
𝑏 𝑢2

𝑏 𝑢3
𝑏

𝜐1 𝜐2 𝜐3

𝑑1
𝑏 𝑑2

𝑏 𝑑3
𝑏

𝑒1 𝑒2 𝑒3

, Ψ𝑅~ 𝟒, 𝟏, 𝟔 ~ similar 

Embed SM Higgs in 𝐻1~ 𝟏, 𝟔, 𝟔 and 𝐻15~ 𝟏𝟓, 𝟔, 𝟔 , 

with Yukawa couplings:

ℒ = 𝑦1Tr Ψ𝐿Ω𝐻1ΩΨ𝑅 + 𝑦15Tr Ψ𝐿Ω𝐻15ΩΨ𝑅 + ത𝑦1Tr Ψ𝐿Ω𝐻1
∗ΩΨ𝑅 + ത𝑦15Tr Ψ𝐿Ω𝐻15

∗ ΩΨ𝑅

The Pati-Salam Higgs fields have become flavoured

17

𝐺 = 𝑆𝑈 4 × 𝑆𝑝 6 𝐿 × 𝑆𝑝 6 𝑅

Recall Ω =
0 𝐼3
−𝐼3 0

c.f. Pati-Salam model



We must break 𝐺 ⟶ ⋯⟶ 𝑆𝑀

We do so using an (almost) minimal set of scalars

Nothing else will be needed to generate realistic fermion 
masses and quark mixings
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𝐺 = 𝑆𝑈 4 × 𝑆𝑝 6 𝐿 × 𝑆𝑝 6 𝑅
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Flavour non-universal 
intermediate gauge group

Generate EFT operators for light 

Yukawas 𝒪~
Φ𝐿/𝑅

Λ𝐻

𝑛

𝜓𝐿𝐻𝜓𝑅

Match onto SM Yukawas

Overview: generation of light Yukawas



Step 1. Deconstruction of electroweak symmetry

At a high scale, break 𝑆𝑝 6 𝐿 → 𝑆𝑈 2 𝐿,1 × 𝑆𝑈 2 𝐿,2 × 𝑆𝑈 2 𝐿,3 via a scalar 𝑆𝐿~ 𝟏, 𝟏𝟒, 𝟏

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

We do something similar for right-sector, with 𝑆𝑅~ ഥ𝟒, 𝟏, 𝟔 breaking 

𝑆𝑈 4 × 𝑆𝑝 6 𝑅 → 𝑆𝑈 3 × 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅
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See also Kuo, Nakagawa, 1984



Aside:

Bordone, Cornella, Fuentes-Martín, Isidori, 1712.01368
Bordone, Cornella, Fuentes-Martín, Isidori, 1805.09328
Fuentes-Martín, Isidori, Pagès, Stefanek, 2012.10492
Fuentes-Martín, Isidori, Lizana, Selimovic, Stefanek, 2203.01952 
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Deconstructed gauge groups have 
been used in flavour model 

building e.g. 𝐺 = ς𝑖
3𝑃𝑆𝑖 for B-

anomalies + fermion masses.

See Claudia’s talk



Aside:
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Deconstructed gauge groups have 
been used in flavour model 

building e.g. 𝐺 = ς𝑖
3𝑃𝑆𝑖 for B-

anomalies + fermion masses.

A relic of 5d physics?
See Ben’s talk

Bordone, Cornella, Fuentes-Martín, Isidori, 1712.01368
Bordone, Cornella, Fuentes-Martín, Isidori, 1805.09328
Fuentes-Martín, Isidori, Pagès, Stefanek, 2012.10492
Fuentes-Martín, Isidori, Lizana, Selimovic, Stefanek, 2203.01952 



Aside:

Deconstructed gauge groups have 
been used in flavour model 

building e.g. 𝐺 = ς𝑖
3𝑃𝑆𝑖 for B-

anomalies + fermion masses.

Here, “gauge-flavour unification” 
provides a natural 4d explanation 
of such a flavour-deconstructed 
gauge symmetry.
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Step 2. Flavoured Higgses
Under the deconstruction 𝑆𝑈 4 × 𝑆𝑝 6 𝐿 × 𝑆𝑝 6 𝑅 → 𝑆𝑈 3 ×ς𝑖=1

3 𝑆𝑈 2 𝐿,𝑖 × 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅,

the Higgs fields split into flavoured components: 

• Reasonable for the Higgs vev to fall into a small number of these family-aligned components. 

• This picks out one family to be heavy, defining the third family. 

• Other fermions massless at renormalizable level. 

We assume the other Higgs components are heavy, and integrated out at a high scale Λ𝐻

24

SM Higgs



Step 3. Breaking to the SM

Last two scalars Φ𝐿 and Φ𝑅 break 𝑆𝑈 3 ×ς𝑖=1
3 𝑆𝑈 2 𝐿,𝑖 × 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅

to SM. The 2-index 14 reps provide link fields:

Φ𝐿 → 𝟏⨁2⨁ 𝟐, 𝟐, 𝟏 ⨁ 𝟐, 𝟏, 𝟐 ⨁ 𝟏, 𝟐, 𝟐

Φ𝐿
12 Φ𝐿

23

Φ𝐿
12 = 𝜖𝐿

12Λ𝐻, Φ𝐿
23 = 𝜖𝐿

23Λ𝐻 : 𝑆𝑈 2 𝐿,1 × 𝑆𝑈 2 𝐿,2 × 𝑆𝑈 2 𝐿,3 ⟶ 𝑆𝑈 2 𝐿

Φ𝑅 = Λ𝐻 … more complicated… also decomposes as [12] + [23] “link fields”: 
break 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅 →𝑈 1 𝑌
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Dimension 5: 𝒪~𝜓𝐿𝐻𝜓𝑅𝜙

×
×

𝑌23
𝑢,𝑑,𝑒 𝑌32

𝑢,𝑑,𝑒

26

EFT: light fermion Yukawas

Scalar potential ⊃ Tr Ω𝑇𝐻1
†ΩΦ𝐿Ω𝐻1 +⋯



Dimension 6: 𝒪~𝜓𝐿𝐻𝜓𝑅𝜙
2

×
×

×

27

EFT: light fermion Yukawas

𝑌13
𝑢,𝑑,𝑒 𝑌31

𝑢,𝑑,𝑒𝑌22
𝑢,𝑑,𝑒



Dimension 7: 𝒪~𝜓𝐿𝐻𝜓𝑅𝜙
3

×
×

Dimension 8: 𝒪~𝜓𝐿𝐻𝜓𝑅𝜙
4

×

28

EFT: light fermion Yukawas

𝑌21
𝑢,𝑑,𝑒

𝑌12
𝑢,𝑑,𝑒

𝑌11
𝑢,𝑑,𝑒



Yukawa matrices have the hierarchical structure

for 𝑓 ∈ 𝑢, 𝑑, 𝑒.

29

Quark masses and mixings



Quark masses and mixings

Mass
eigenvalues:

CKM matrix 𝑉CKM = 𝑉𝐿
𝑢𝑉𝐿

𝑑∗ ≈

Our CKM matches onto the Wolfenstein parametrization Wolfenstein, 1983 30

The 𝐡𝑖𝑗
𝑢,𝑑,𝑒 and 𝐤𝑖𝑗

𝑢,𝑑,𝑒 are combinations of our EFT 

coefficients.

Hierarchies in mixing angles: 
Choose 𝜖𝐿

12~𝜆 (Cabibbo), 𝜖𝐿
23~ 𝑉𝑐𝑏 ~𝜆

2

Hierarchies in mass ratios:
Choose 𝜖𝑅

12~𝜆2, 𝜖𝑅
23~𝜆

Extract observables using matrix perturbation theory:



Quark masses and mixings

Mass
eigenvalues:

CKM matrix 𝑉CKM = 𝑉𝐿
𝑢𝑉𝐿

𝑑∗ ≈

Our CKM matches onto the Wolfenstein parametrization Wolfenstein, 1983 31

The 𝐡𝑖𝑗
𝑢,𝑑,𝑒 and 𝐤𝑖𝑗

𝑢,𝑑,𝑒 are combinations of our EFT 

coefficients.

Hierarchies in mixing angles: 
Choose 𝜖𝐿

12~𝜆 (Cabibbo), 𝜖𝐿
23~ 𝑉𝑐𝑏 ~𝜆

2

Hierarchies in mass ratios:
Choose 𝜖𝑅

12~𝜆2, 𝜖𝑅
23~𝜆

... And there is enough freedom in the EFT 
coefficients to fit all the data 

Extract observables using matrix perturbation theory:



Our EWFU model explains

• The origin of 3 generations

• The hierarchical structure of fermion masses and quark mixing angles

in terms of a flavour-enriched version of Pati—Salam unification
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Our EWFU model explains

• The origin of 3 generations

• The hierarchical structure of fermion masses and quark mixing angles

in terms of a flavour-enriched version of Pati—Salam unification

Protons are stable in this UV model. So the scales of EWFU can be brought low…
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How low can you go?
We have the following heavy gauge bosons in our model:

Heavy The light states – all 
flavoured versions of 
the EW gauge bosons 
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How low can you go?
We have the following heavy gauge bosons in our model:

Heavy The light states – all 
flavoured versions of 
the EW gauge bosons 

35

For example, consider the 𝑊′, 𝑍′ triplets from Φ𝐿. 
The lightest 𝑍′ couples to 𝑄𝐿,2, 𝑄𝐿,3 , 𝐿𝐿,2 , 𝐿𝐿,3 …



Some future directions

• Low scale EWFU 
• Flavour-dependent forces – B anomalies etc?
• Phenomenological analysis: compute lower bounds 

on scales
• How much tuning in scalar sector?

• Neutrino masses

• Cosmology
• EWFU predicts monopole production. Dilute by 

taking Λ𝑅 > Λinflation
• Gravitational wave production in early Universe: 

stochastic multi-peaked GW signal. An alternative 
probe of EWFU, even if the SSB scales are very high

Greljo, Opferkuch, Stefanek, 2019 36



Backup slides
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Small scale separation, 
𝒪 10−1 − 10−2 , fixed by 
Yukawa hierarchy

Arbitrary scale separation; 
can be small to reduce 

tuning / 𝑚ℎ
2 sensitivity

“Distance to New Physics”: can 
be as low as experimentally 
allowed by flavour bounds



Step 1: quark-lepton breaking and deconstruction of 𝑆𝑝 6 𝑅 at Λ𝑅

Break 𝑆𝑈 4 × 𝑆𝑝 6 𝑅 → 𝑆𝑈 3 × 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅 via ℂ scalar 𝑆𝑅~ ഥ𝟒, 𝟏, 𝟔

Vev 𝑆𝑅 = Λ𝑅𝑎4
∗⨂𝑐3

× × .
× × .
. . ×

× × .
× × .
. . .

× × .
× × .
. . .

× × .
× × .
. . ×

𝑆𝑈 4 (anti)-
fundamental 
index

𝑆𝑝 6 𝑅

fundamental 
index

𝑈 1 𝑅 generated by

𝑋 = 𝑡𝐵−𝐿 + 𝑡3
𝑅

3rd family

39



Step 1: quark-lepton breaking and deconstruction of 𝑆𝑝 6 𝑅 at Λ𝑅

Break 𝑆𝑈 4 × 𝑆𝑝 6 𝑅 → 𝑆𝑈 3 × 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅 via ℂ scalar 𝑆𝑅~ ഥ𝟒, 𝟏, 𝟔

Vev 𝑆𝑅 = Λ𝑅𝑎4
∗⨂𝑐3

× × .
× × .
. . ×

× × .
× × .
. . .

× × .
× × .
. . .

× × .
× × .
. . ×

17 heavy gauge bosons decouple at 𝑚~Λ𝑅:

• 𝑈1~ 𝟑, 𝟏 2/3 leptoquark, flavour universal couplings

• x3 charged (complex) 𝑍′~ 𝟏, 𝟏 1

• x5 neutral (real) 𝑍′~ 𝟏, 𝟏 0

𝑆𝑈 4 (anti)-
fundamental 
index

𝑆𝑝 6 𝑅

fundamental 
index

𝑈 1 𝑅 generated by

𝑋 = 𝑡𝐵−𝐿 + 𝑡3
𝑅

3rd family

40



Step 2: deconstruction of 𝑆𝑝 6 𝐿 at Λ𝐿

Break 𝑆𝑝 6 𝐿 → 𝑆𝑈 2 𝐿,1 × 𝑆𝑈 2 𝐿,2 × 𝑆𝑈 2 𝐿,3 via ℝ scalar 𝑆𝐿~ 𝟏, 𝟏𝟒, 𝟏

Vev 𝑆𝐿 = Λ𝐿 𝑏1 ∧ 𝑏4 − 𝑏3 ∧ 𝑏6

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

𝑆𝑝 6 𝐿

fundamental 
index

Antisymmetrize

See also Kuo, Nakagawa, 1984
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Step 2: deconstruction of 𝑆𝑝 6 𝐿 at Λ𝐿

Break 𝑆𝑝 6 𝐿 → 𝑆𝑈 2 𝐿,1 × 𝑆𝑈 2 𝐿,2 × 𝑆𝑈 2 𝐿,3 via ℝ scalar 𝑆𝐿~ 𝟏, 𝟏𝟒, 𝟏

Vev 𝑆𝐿 = Λ𝐿 𝑏1 ∧ 𝑏4 − 𝑏3 ∧ 𝑏6

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

1 . .
. 2 .
. . 3

12 broken generators decouple at 𝑚~Λ𝐿:

• x3 𝑊′, 𝑍′ triplets, 

• x3 more 𝑍′s 

𝑆𝑝 6 𝐿

fundamental 
index

Antisymmetrize

See also Kuo, Nakagawa, 1984
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Linearly realised gauge symmetry is at this point

Just need 2 more scalars to break this to SM:

ℝ scalar Φ𝐿~ 𝟏, 𝟏𝟒, 𝟏

ℂ scalar Φ𝑅~ 𝟏, 𝟏, 𝟏𝟒

Breaking to the SM
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Scalar vevs: breaking to the SM

breaks 𝑆𝑈 2 𝐿,1 × 𝑆𝑈 2 𝐿,2 × 𝑆𝑈 2 𝐿,3 ⟶ 𝑆𝑈 2 𝐿

Gives x2 𝑊′, 𝑍′ triplets; 

one coupled to 1st and 2nd families, with 𝑚12~𝑔𝐿𝜖𝐿
12Λ𝐻

one coupled to 2nd and 3rd families, with 𝑚23~𝑔𝐿𝜖𝐿
23Λ𝐻 [more later]

breaks 𝑆𝑝 4 𝑅,12 × 𝑈 1 𝑅 ⟶𝑈 1 𝑌

Gives 10 charged & neutral 𝑍′s, masses 𝑚𝑅~𝑔𝑅𝜖𝑅
𝑖𝑗
Λ𝐻

44



Terms in the scalar potential

All the required EFT operators are already generated in our model, by integrating out the heavy 
components of 𝐻1,15 ; if we include (renormalizable) interactions in the scalar potential.

Scalar Interactions

Cubics:

x1 ℝ coupling (per 𝑎) x1 ℂ coupling (per 𝑎)
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In fact, all the required EFT operators are already generated in our model, by integrating out the heavy 
components of 𝐻1,15 ; if we include (renormalizable) interactions in the scalar potential.

Scalar Interactions

Quartics:

x1 ℂ and x2 ℝ couplings (per 𝑎)

x1 ℂ coupling (per 𝑎)

x1 ℝ coupling (per 𝑎)
46

Terms in the scalar potential



Our CKM is not a general unitary matrix. Like Wolfenstein, it satisfies

𝑉𝑢𝑑 = 𝑉𝑐𝑠 , 𝑉𝑡𝑠 = 𝑉𝑐𝑏 , 𝑉𝑢𝑑 = 1 −
1

2
𝑉𝑢𝑠

2

at leading order. Also, Jarlskog invariant satisfies

which implies CP-violating phase 𝛿13 ≈ 1.25 radians. 

All these relations agree well with data.

Properties of our CKM model
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Our CKM is not a general unitary matrix. Like Wolfenstein, it satisfies

𝑉𝑢𝑑 = 𝑉𝑐𝑠 , 𝑉𝑡𝑠 = 𝑉𝑐𝑏 , 𝑉𝑢𝑑 = 1 −
1

2
𝑉𝑢𝑠

2

at leading order. Also, Jarlskog invariant satisfies

which implies CP-violating phase 𝛿13 ≈ 1.25 radians. 

All these relations agree well with data.

Also, 𝑉𝑡𝑑 = −𝑉𝑢𝑏
∗ + 𝑉𝑢𝑠𝑉𝑐𝑏

∗.

The upshot of these relations:

If, in our model, we can fit 𝑉𝑢𝑠, 𝑉𝑐𝑏, and 𝑉𝑢𝑏 to be arbitrary ℂ-numbers, then can freely fit 𝑉𝑢𝑠 , 𝑉𝑐𝑏 , 𝑉𝑢𝑏 , 
𝑉𝑡𝑑 to their central experimental values, and the rest of CKM is in close agreement.

Properties of our CKM model
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Indeed there is enough freedom in the model to freely fit the coefficients of [all as ℂ-numbers]

• x9 masses (quarks and charged leptons)

• 𝑉𝑢𝑠, 𝑉𝑐𝑏, and 𝑉𝑢𝑏

Fitting quark masses and mixings
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Indeed there is enough freedom in the model to freely fit the coefficients of [all as ℂ-numbers]

• x9 masses (quarks and charged leptons)

• 𝑉𝑢𝑠, 𝑉𝑐𝑏, and 𝑉𝑢𝑏

Sketch of how this works:

1. Fit 𝑚𝑡 ,𝑚𝑏 ,𝑚𝜏, 𝑉𝑐𝑏 from 𝑦1, 𝑦15, 𝑦1, 𝑦15 , for any* values of 𝛽𝐿
1, 𝛽𝐿

15

Fitting quark masses and mixings

50*Away from a small set of points



Indeed there is enough freedom in the model to freely fit the coefficients of [all as ℂ-numbers]

• x9 masses (quarks and charged leptons)

• 𝑉𝑢𝑠, 𝑉𝑐𝑏, and 𝑉𝑢𝑏

Sketch of how this works:

1. Fit 𝑚𝑡 ,𝑚𝑏 ,𝑚𝜏, 𝑉𝑐𝑏 from 𝑦1, 𝑦15, 𝑦1, 𝑦15 , for any* values of 𝛽𝐿
1, 𝛽𝐿

15

2. Fit 𝑚𝑐, 𝑚𝑠,𝑚𝜇 , 𝑉𝑢𝑠, 𝑉𝑢𝑏 from 𝛽𝑅
1, 𝛽𝐿𝑅

1 , 𝛽𝐿𝐿
1 , 𝛽𝐿𝐿

15, 𝑤23, 𝑤23 … 

3. Fit 𝑚𝑢,𝑚𝑑 , 𝑚𝑒 from 𝛽𝑅𝑅
1 , 𝑤12, 𝑤12

The hierarchies are “in-built” from the dependence on 𝜖𝐿,𝑅
12,23

Fitting quark masses and mixings

Recall
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