

Searches for Dark Matter and Long-Lived Particles in ATLAS and CMS

La Thuile 2022

Jon Burr on behalf of the ATLAS and CMS experiments

YSF talks at this conference:

- <u>ATLAS HNL</u>
- ATLAS dE/dx

Important references

- [1] Collider searches for long-lived particles beyond the Standard Model
- [2] Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider
- [3] Dark matter summary plots for s-channel and 2HDM+a models
- [4] Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing energy in the final state
- 5 Search for invisible Higgs-boson decays in events with vector-boson fusion signatures using 139 fb⁻¹ of proton-proton data recorded by the ATLAS experiment
- [6] Search for invisible decays of the Higgs boson produced via vector boson fusion in proton-proton collisions at \sqrt{s} = 13 TeV
- [7] Search for long-lived particles decaying into muon pairs in proton-proton collisions at $\sqrt{s} = 13$ TeV collected with a dedicated high-rate data stream
- [8] Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at \sqrt{s} =13 TeV
- [9] Search for long-lived charginos based on a disappearing-track signature using 136 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector
- [10] Search for neutral long-lived particles in pp collisions at $s\sqrt{=13}$ TeV that decay into displaced hadronic jets in the ATLAS calorimeter
- [11] Search for light long-lived neutral particles that decay to collimated pairs of leptons or light hadrons in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector
- [12] Search for long-lived particles decaying to a pair of muons in proton-proton collisions at \sqrt{s} = 13 TeV
- CMS Exotica public results, CMS SUSY public results, ATLAS Exotics public results, ATLAS SUSY public results

Searches for Dark Matter

- LHC dark matter searches cover a rich variety of final states and models
- Cover a range of complete and simplified models
 - 2HDM+a, Higgs portal
- Complementarity with resonance searches _q

a/A

3

Searches for Dark Matter [3]

$t(\bar{t}) + E_{\rm T}^{\rm miss}$ DM Combination [4]

- Combine results from searches for single top and $t\bar{t} + E_T^{miss}$ searches
 - 0I, 1I and 2I channels

VBF Higgs to Invisible (ATLAS) [5] (CMS) [6]

Overview

- Place limits on the $h \rightarrow inv$ branching fraction
- Search in the VBF production mode
 - Pair of forward jets with a large separation and moderate $E_{\rm T}^{\rm miss}$

CM

- Select signal region events using $E_{\rm T}^{\rm miss}$ trigger
 - Also dedicated VBF trigger (CMS)
- Split signal regions by
 - N_{jet}
 - $E_{\rm T}^{\rm miss}$
 - $\Delta \phi_{jj} / \Delta \eta_{jj}$
 - *m_{jj}*

ATLAS, 139 fb⁻¹ Signal region bins for the search of VBF invisible Higgs boson decays

q

H

Major Backgrounds and Selections

- Major (95%) background from V+jets
 - Estimate with dedicated control regions
 - Collaboration with theorists for NLO calculations (ATLAS)
 - Extra constraint on Z+jets from W CR, γ + jets CR (CMS)
- Estimate multijet background with two methods
 - Rebalance and Smear (ATLAS)
 - control region, invert pileup/fake MET selections

CMS

Results

 $\mathcal{B}_{inv} < 0.18$ (95% confidence), 0.10 expected

 $\mathcal{B}_{inv} < 0.145 \ (95\% \ confidence), 0.103 \ expected$ c.f. $\mathcal{B}_{inv} < 0.11 \ observed \ from \ previous$ combination ($\mathcal{B}_{inv} < 0.13 \ from \ H \rightarrow inv \ alone)$ <u>ATLAS-CONF-2020-052</u>:

- VBF
- $t\bar{t}H 0\ell + 2\ell$
- Run 1 combination (VBF/VH)

Long-Lived Particles

LLP Overview

- Three main routes to yield LLPs
 - Small mass splittings
 - Small couplings
 - Very massive mediators
- Common in many BSM theories (and the SM)

$$\tau^{-1} = \frac{1}{2m_X} \int d\Pi_f |\mathcal{M}|^2$$

Experimental Signatures

- Signature depends on a few factors
 - Lifetime/decay location
 - Charged vs neutral
 - Decay products

Comparisons to 'prompt' searches

- Prompt reconstruction techniques often not suited to displaced signatures
 - Pointing to IP
 - Missing hits in trackers
 - Cleaning
- May need dedicated triggers
- Significant impact from non-collision backgrounds
- See many examples in what follows
- Prompt searches constrain LLP models (e.g. $H \rightarrow inv$)

Muon pair production in high-rate data stream (CMS) [7]

Overview

- Data scouting
 - 3kHz dimuon trigger, ~1/1000 event size
- Dimuon vertices in the ID ($l_{xy} < 11$ cm)
 - 200 MeV < $m_{\mu\mu}$ < 50 GeV
- Interpret with dark photon and scalar resonance models
- Require displaced vertices

 - $|d_{xy}|/\sigma_{d_{xy}}$ $|d_{xy}|/(l_{xy}m_{\mu\mu}/p_T^{\mu\mu})$

ZD

Η'n

Major Backgrounds

- Accidental crossings, cosmics
 - Vertex selections
- Material interactions
 - · Use map to veto vertices near detector material
- Prompt muons
 - Require missing hits (where $l_{xy} > 3.5$ cm)
- Model backgrounds using analytic functions of $m_{\mu\mu}$
 - Mask locations of known SM resonances

Heavy Neutral Leptons (CMS) [8]

Overview

- Search for HNLs
 - Assume N couples to 1 generation => $\ell = \ell'$
- Trigger on prompt lepton from IP
- Split events into categories based on
 - Lepton flavours
 - Vertex displacement
 - *m*_{*ll*}
- Main backgrounds
 - π , K, B hadron decays, unidentified photon conversions

CMS

- SM resonances
- Similar ATLAS analysis => YSF talk

<0.5 0.5-1.5 1.5-4 >4

 Δ_{2D} (cm)

Jon Burr

<0.5 >0.5

19

Disappearing Track (ATLAS) [9]

Overview

- Search for charged SUSY LLPs decaying in the ID
- Nearly conserved symmetry => small mass splittings (few 100 MeV)
 - π^{\pm} falls below track reconstruction threshold
 - AMSB pure wino $c\tau \sim 58 \mathrm{mm}$
 - 'natural' pure Higgsino $c\tau$ ~10mm
- Require >4 pixel hits => l_{xy} > 122mm
- Use $E_{\rm T}^{\rm miss}$ trigger to select signal events

Selections and major backgrounds

- Dedicated quality selection for tracklets, require isolation
 - Isolate from other tracks, electrons, muons and calo energy
- Charged particle scattering $(t\bar{t}, W \rightarrow \ell \nu)$
 - Estimate with $Z \rightarrow \ell \ell$ tag and probe
- Combinatorial (fake tracklet)
 - Estimate in high $|d_0|$ region

Calorimeter Ratio (ATLAS) [10]

Overview

- Search for LLPs decaying to jets inside the calorimeters
 - Narrow jets with few tracks and high $E_{\rm H}/E_{\rm EM}$ (CalRatio)
- Benchmark using hidden sector (HS) model
 - SM and HS connected by heavy neutral boson Φ (can be SM Higgs)
 - Long-lived neutral scalar *s* decays dominantly to heaviest available fermion
- Data collected with dedicated 'CalRatio' triggers
 - L1: 'Low E_T ' $E_T > 30$ GeV, isolated from EM calorimeter deposits
 - L1 'High E_T ' $E_T > 60$ GeV, 100GeV in 0.2 × 0.2 ($\Delta \eta \times \Delta \phi$)
 - HLT: Dedicated cleaning, high $E_{\rm H}/E_{\rm EM}$, low tracker activity

∲ **`−∝**`

Selections and major backgrounds

- BIB, QCD multijets
 - Train a NN to discriminate BIB, QCD and displaced signal jets

- Input variables: timing, ID/MS track info, calorimeter topoclusters, energy per calorimeter layer
- Use adversarial net to correct for difference between MC and data
- Event-level BDT designed to separate signal from BIB
- Two versions of NN and BDT, low E_T and high E_T

Results

Displaced Leptons/Hadrons (ATLAS) [11]

Overview

- Search for LLPs decaying to fermions in the calorimeter or MS
- Interpret using dark photon model
- Consider 'ggF' and 'WH' selections
 - ggF: use LLP triggers; CalRatio or muons without tracks in the ID
 - WH: use prompt lepton triggers
- Consider μ Dark Photon Jets (μ DPJ) and caloDPJs

Major backgrounds

 μ DPJs Per-track DNN: timing, z_0 , η , ϕ

Calo DPJs Per jet CNN using calorimeter cells

Results

Overview

- Search for displaced vertices from muon pairs in the entire detector
- Interpret using dark photon and simplified scalar portal models
- Select data using MS-only dimuon triggers
- Match MS-only standalone (STA) muons to tracker+MS (TMS) muons and use TMS when available

Major Backgrounds

- QCD punch through
 - Removed through isolation selections
- Cosmics
 - Remove back-to-back muons, remove events with multiple parallel muons (cosmic ray showers)
- SM resonances, B meson cascade decays
 - Require $m_{\mu\mu} > 10 \text{GeV}$
- Mismeasured prompt muons (mostly DY $\mu\mu$, $\tau\tau$)
 - $\Delta \Phi = \Delta \phi \left(\overrightarrow{p_T}^{\mu\mu}, \overrightarrow{SV} \right)$
 - Use approximate $\Delta \Phi$ symmetry to predict background

Results

Conclusions and Outlook

Summary

- LHC DM searches continue to probe a hugely varied model space
- Many models (e.g. dark/hidden sectors) can generate both DM and LLPs

 $\mathbb{C}N$

- LLP searches are becoming increasingly common
 - Many new results, with others in the pipeline
- Many interesting and challenging backgrounds, often common to multiple searches
 - LHC LLP working group white paper [2] summarizes many of these
- New dedicated Run 3 triggers will allow extending sensitivity even further 10⁴

ATL-PHYS-PUB-2022-007

Outlook: Beyond the main experiments

CODEX-b

milliQan

AL3X

Jon Burr

BACKUP

Heavy Neutral Leptons

- Interact only through mixing with SM neutrinos
 - Can help explain low neutrino masses through seesaw mechanism
- Can contribute to CP-violation
- => mass scale of 10 GeV, $10^{-11} < |V_{N\ell}^2| < 10^{-5}$

CM

• $\tau \propto m_N^{-5} V_{N\ell}^{-2}$

YOF

DGE

Jon Burr

Dark Photons

- Dark sector with Higgs portal
- Dark photon mixes with SM γ/Z
- Decays to SM leptons and light quarks
- Lifetime controlled by mixing parameter $10^{-11} < \epsilon < 10^{-2}$

Light Neutral Boson

- Hidden sector connected to SM through heavy neutral boson Φ
 - Φis allowed to be the SM Higgs
- $\Phi \rightarrow ss$ where s is a neutral LLP
- *s* decays to fermions with the largest BR to the heaviest available species

CMS Data Stream Muon $m_{\mu\mu}$

Jon Burr

CMS HNL Selections

Selection criteria

$\Delta R(\ell_2, \ell_3)$	< 1
$ \Delta \phi(\ell_1, \ell_{2/3}) $	>1
$m(\ell_1\ell_2\ell_3)$	\in [50,80] GeV
number of b jets	= 0
$p_{\mathrm{T}}(\ell_2\ell_3)$	> 15 GeV
$\cos\theta(\mathrm{SV},\ell_2\ell_3)$	> 0.99
$p_{\rm SV}$	> 0.001
$S(\Delta_{2D})$	> 20
$m(\ell\ell)$	∉ vetoed ranges

Resonance	Vetoed range (GeV)
ω	0.78 ± 0.08
ϕ	1.02 ± 0.08
J/ψ	3.10 ± 0.08
$\psi(2S)$	3.69 ± 0.08
Y(1S)	9.46 ± 0.08
Y(2S)	10.02 ± 0.08
Y(3S)	10.36 ± 0.08
Z	91.2 ± 10.0

ATLAS Disappearing Track Selections

Signal region	Electroweak production	Strong production
Number of electrons and muons Number of pixel tracklets	0 ≥ 1	
$E_{\rm T}^{\rm miss}$ [GeV]	> 200	> 250
Number of jets $(p_{\rm T} > 20 \text{ GeV})$	≥ 1	≥ 3
Leading jet pT [GeV]	> 100	> 100
Second and third jet p_{T} [GeV]	—	> 20
$\Delta \phi_{\min}^{\text{jet}-E_{\text{T}}^{\text{miss}}}$ (up to 4 th jet with $p_{\text{T}} > 50 \text{ GeV}$)	> 1.0	> 0.4

ATLAS CalRatio Triggers

ATLAS CalRatio NN architecture

ATLAS CalRatio Selections

Low- $E_{\rm T}$ selection	High- $E_{\rm T}$ selection
$H_{\rm T}^{\rm miss}/H_{\rm T} < 0.6$	$H_{\rm T}^{\rm miss}/H_{\rm T} < 0.6$
$(\sum_{j \in t^{sig_{1l}}, j \in t^{sig_{2l}}} \log_{10}(E_{\rm H}/E_{\rm EM})) > 2$	$(\sum_{j \in t^{sig_{1h}}, j \in t^{sig_{2h}}} \log_{10}(E_{\rm H}/E_{\rm EM})) > 1$
$p_{\rm T}({\rm jet}^{{\rm sig}_{1l}}) > 80 {\rm GeV}$	$p_{\mathrm{T}}(\mathrm{jet}^{\mathrm{sig}_{1h}}) > 70 \mathrm{GeV}$
$p_{\rm T}({\rm jet}^{{\rm sig}_{2l}}) > 80 {\rm GeV}$	$p_{\mathrm{T}}(\mathrm{jet}^{\mathrm{sig}_{2h}}) > 80 \mathrm{GeV}$
low- $E_{\rm T}$ NN product > 0.7	high- $E_{\rm T}$ NN product > 0.5

ATLAS Displace Lepton/Hadron selections

Requirement / Region	$\mathrm{SR}^{\mathrm{ggF}}_{2\mu}$	SR_{2c}^{ggF}	$SR_{c+\mu}^{ggF}$	Requirement / Region	$\mathrm{SR}^{\mathrm{WH}}_{\mathrm{c}}$	SR_{2c}^{WH}	$SR_{c+\mu}^{WH}$
Number of μ DPJs	2	0	1	Number of μ DPJs	0	0	1
Number of caloDPJs	0	2	1	Number of caloDPJs	1	2	1
Tri-muon MS-only trigger	yes	-	-	Single lepton trigger (μ ,e)	yes	yes	yes
Muon narrow-scan trigger	yes	-	yes	m _T [GeV]	> 120	_	-
CalRatio trigger	-	yes	-	$ t_{\rm opp} $ [ns]	< 4	< 4	< 4
$ \Delta t_{caloDPJs} $ [ns]	-	< 2.5	-	$ \tau_{caloDPJ} $ [IIS]		< 0.10 (0.15)	< 0.1
caloDPJ JVT	-	< 0.4	-	leading (far) caloDPJ width	< 0.08	< 0.10 (0.15)	< 0.1
$\Delta\phi_{ m DPI}$	$> \pi/5$	$> \pi/5$	$> \pi/5$	caloDPJ $p_{\rm T}$ [GeV]	> 30	-	-
BIB tagger score	, _	> 0.2	> 0.2	JVT	< 0.6	< 0.6	< 0.6
$\max(\sum p_{\rm T})$ [GeV]	< 4.5	< 4.5	< 4.5	$\min(\Delta\phi)$	$< 3\pi/5$	$< 3\pi/10$	$< 7\pi/20$
∏ QCD tagger	-	> 0.95	> 0.9	min(QCD tagger)	> 0.99	> 0.91	> 0.9

