# **Exotic Searches at the LHC**

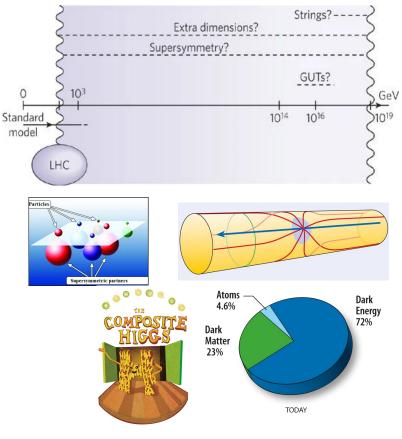


Korea

JeongEun Lee Kyungpook National University (KNU)



On behalf of the ATLAS and CMS collaborations March 11th 2022


La Thuile 2022 XXXV Les Rencontres de Physique de la Vallée d'Aoste



## **Testing BSM Physics at the LHC**



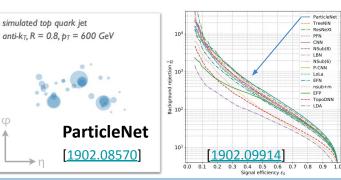
- LHC is world's most powerful discovery machine
  - Hope to find hints of BSM physics in direct searches and measurements as well
- Program driven by BSM and experimental results
  - Explaining unresolved mysteries in SM
    - Hierarchy problem, Unification, Dark matter, neutrino mass, Matter-antimatter asymmetry …
  - Strong hints from measurements
    - μ g-2, B-anomalies, direct detection of DM,
       cosmological constraints, neutrino oscillation ...
- Program driven by signatures in detector
  - Trigger and reconstruction algorithm are important
  - Improving techniques (ML) to explore more exotic world
    - Allow us to test new signature, more sensitivity



#### JeongEun Lee (KNU)

#### **Exotic Searches at the LHC**

#### March 11 2022


# CMS


JeongEun Lee (KNU)

#### **Overview of Exotic searches at LHC**



- The O(100) list of BSMs being covered with full Run-2
  - Only a small subset of recent results will be showing.
  - Search for new bosons/interactions
    - New heavy resonances (Spin-0,1,2)
    - Leptoquarks (Spin-0/1)
  - Search for new fermions
    - Vector-like quarks
    - Heavy Leptons
  - Search for Flavor anomalies (Z/Z'  $\rightarrow e\mu$ )
- Analysis techniques with a dedicated role for ML
  - Improvement on Jet Tagging; Boosted decay products
  - Better background estimates





March 11 2022

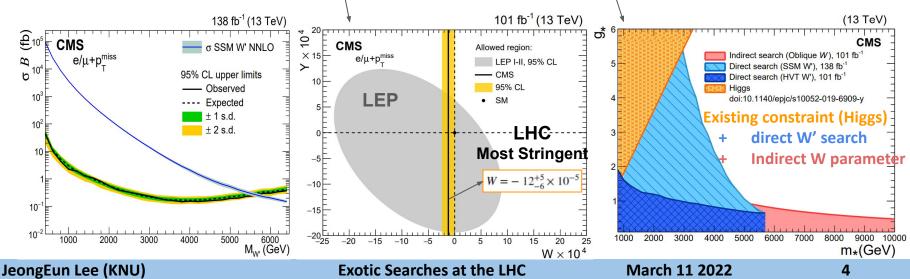
ATLAS EXOT public results link CMS EXO public results link CMS B2G public results link

3

Exotic Searches at the LHC



### Search for X $\rightarrow$ lv (l=e, $\mu$ )

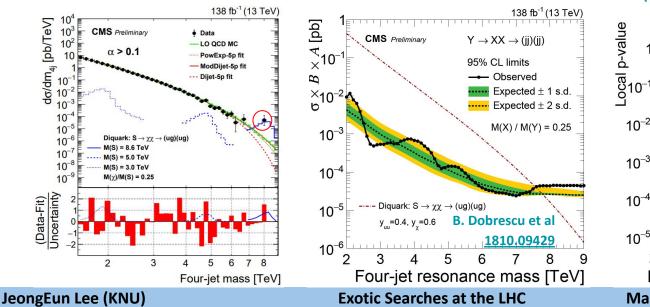

2 operators can be tested in lv

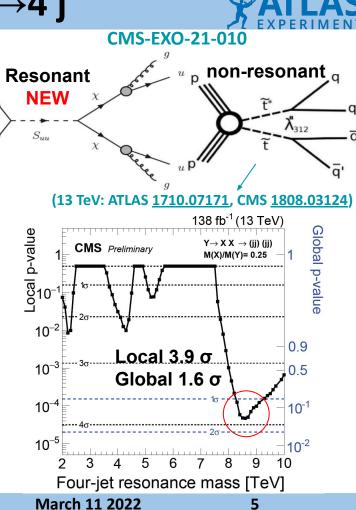
 $-rac{W}{4m_W^2}(D_
ho W^a_{\mu
u})^2, -rac{Y}{4m_W^2}(D_
ho B_{\mu
u})^2 ~~ {W,~Y~{
m parameter}\over {
m grows~with}~\sqrt{
m s}}$ 

Golden channel : Search for heavy charged W' with  $I+p_{\tau}^{miss}$ 



- Bump hunt search in  $M_{\tau}$  with various BSMs : SSM, split-UED model, RPV SUSY
- Indirect search in effective field theory (EFT)
  - NP can induce effect on SM predictions
  - Parameterizing in the framework of EFT
- Set new constraints on composite Higgs model parameter (m\*-g\*) with 3 different ways
- First results on W parameter and compositeness parameters using  $pp \rightarrow lv$  data




#### Search for $Y \rightarrow XX \rightarrow 4j$



- Both resonant (Diquark model) and non-resonant productions (RPV Stop model) are considered.
- $\circ$  Optimal dijet pairing with small M  $_{Asymmetry}, \Delta R^{pair}_{\quad jj,} \Delta \eta_{\ \it u}$
- Background-fit in various  $\alpha$  bins = <m<sub>x=ij</sub> >/m<sub>y=4j</sub>

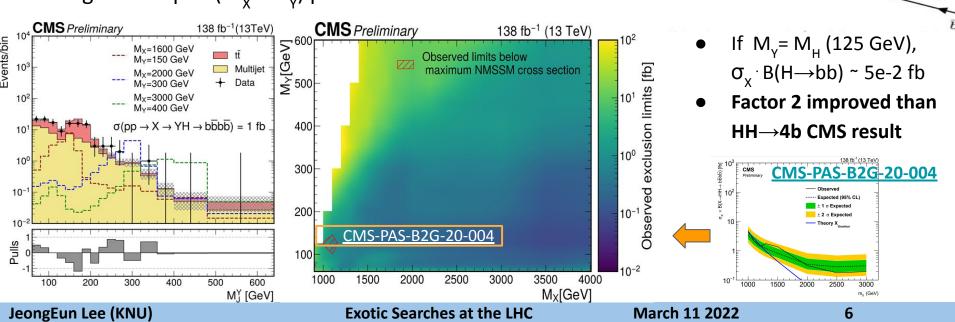






#### Search for $X \rightarrow YH$ in 4b

CMS-PAS-B2G-21-003


(13 TeV: CMS 2106.10361)

X

2000

000

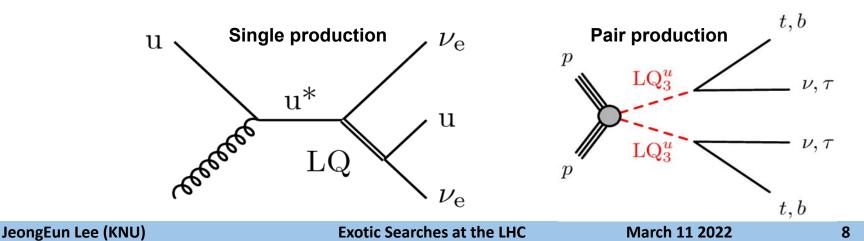
- Search for 2 new scalars (X, Y) in 4b channel
  - Motivated from NMSSM Higgs scalars model
- Using a new jet substructure tool ⇒ ParticleNet (ML)
  - jet as kind of "particle cloud", clustered to get info
- Signal bump in (M<sub>x</sub> M<sub>y</sub>) plane

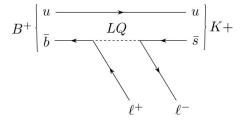




#### Search for $X \rightarrow HH$




ATLAS-CONF-2021-052 Combination of searches for Higgs boson pairs, (13TeV: ATLAS 1906.02025, CMS 1811.09689) resonant and non-resonant 9 2000000000000 bbbb Sensitivity of different channels in different mass bbtt X ranges bbyy g anneelee [q]] (HH ← X) α 10<sup>3</sup> Local p<sub>0</sub>-value 10 ATLAS Preliminary  $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$ Spin-0 Observed limit (95% CL) Expected limit (95% CL) Comb. exp. limit ± 1σ Comb. exp. limit ± 20 10 Local 3.2 o 10<sup>2</sup> Global 2.1 σ  $10^{-3}$ ATLAS-CONF-2021-035 bbbb 101 **ATLAS** Preliminary ATLAS-CONF-2021-030 bbbb bbτ+τ- $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$  $b\bar{b}\tau^{+}\tau^{-}$ ATLAS-CONF-2021-016 bbyy  $10^{-4}$ Spin-0 bbyy Combined 10<sup>0</sup> Combined 300 500 2000 3000 200 1000 3000 200 300 500 1000 2000 m<sub>X</sub> [GeV] m<sub>X</sub> [GeV] **Exotic Searches at the LHC** March 11 2022 JeongEun Lee (KNU) 7




## Leptoquarks (LQ)



- Leptoquarks (LQs) can couple to both leptons and quarks
  - Both scalar and vector bosons are possible
- Carry fractional electric charge
- Processes can violate lepton flavor universality (LFU)
  - Possible explanation for B anomalies:
    - strongly couple to 3rd generation SM fermions
- Predicted in GUTs and composite Higgs models







#### **Overview of LQ Searches**

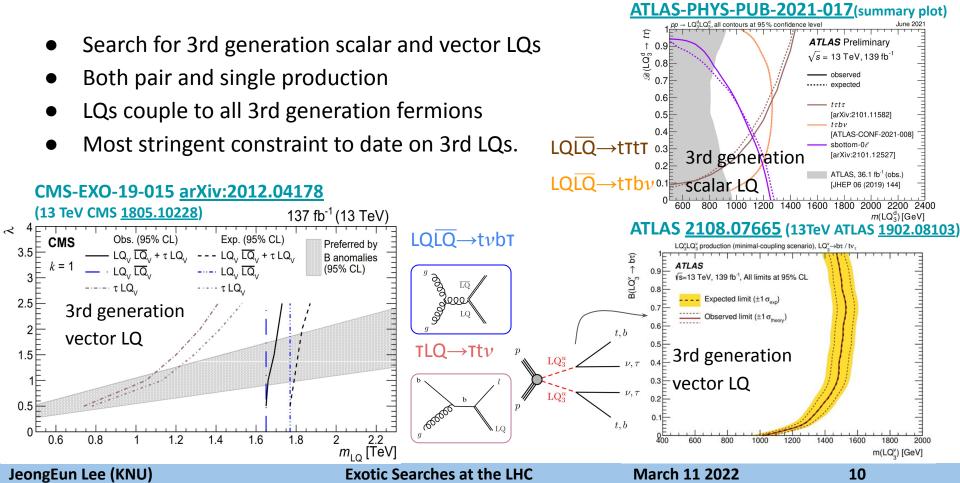




Dedicated searches for 1st, 2nd, 3rd or mixed generation

JeongEun Lee (KNU)

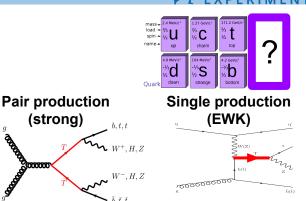
Exotic Searches at the LHC


March 11 2022

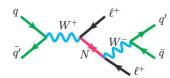
9



### Search for 3rd generation LQ



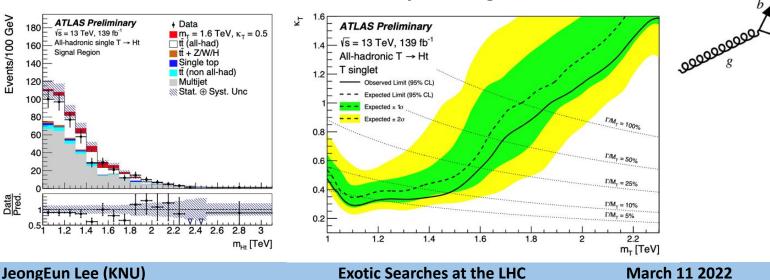



## New Fermions: VLQ, heavy leptons

- Vector-like quarks (VLQ)
  - VLQs are colored spin ½ fermions
  - L/R-handed transform in the same way
  - Can mix with SM quarks to regulate Higgs mass
- Heavy Neutrinos (HN)
  - Potential BSM solutions for neutrino mass :
    - Type-I Seesaw models : HN mix with SM v
    - **Type-III** Seesaw models : SU(2) triplet  $\Sigma^0, \Sigma^+, \Sigma^-$  leptons
    - Left-Right Symmetry model (LRSM) : W<sub>R</sub>, Z' along with 3 HN<sub>R</sub>
    - Composite model
  - If HN is Majorana neutrino, Lepton Number Violation is possible





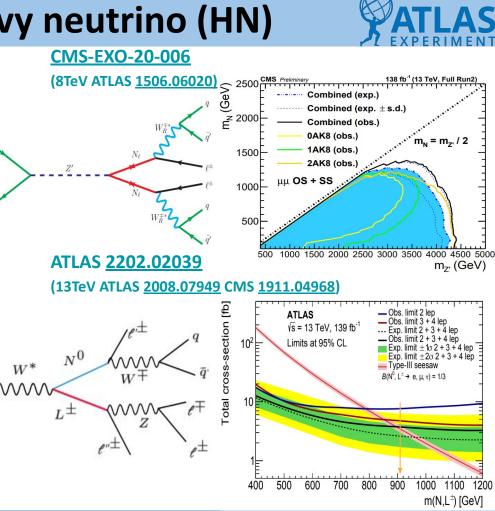





## Vector-like T quark→Ht (fully hadronic)

- For heavy T-quark mass (>1 TeV), VLQs would mainly be produced singly if coupling is sufficiently large.
- Higgs and top are reconstructed as large-radius jets.
- tagging used to split further into search, validation and normalization regions
- Use data-driven method for multijet background




hadronic W<sup>2</sup> *T t b t b t b anti-b* 

ATLAS- EXOT-2019-07 2201.07045 (13 TeV CMS 1909.04721)



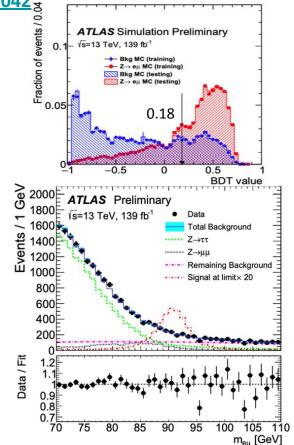
## Search for heavy neutrino (HN)

- HN can be pair produced from Z' in LRSM
- First in CMS with 13 TeV (ATLAS 8 TeV)
- More complicated topology : 3 SR
  - $\circ$  2 resolved (0 AK8J, 2 l) m<sub>N</sub>/m<sub>z</sub>, ~1
  - $\circ$  1 resolved + 1 boosted (1 AK8J, 1-2 l)
  - $\circ$  2 boosted (2 AK8J, 0-2 l) m<sub>N</sub>/m<sub>Z'</sub> << 1
- Combinations of I (same-flavor)+jets
- HN and HL can be produced from virtual EW boson in Type-III seesaw model
- First combination with II+jets channel
- A significant improvement in the sensitivity, m(N,L) < 910 GeV is exclude</li>



13



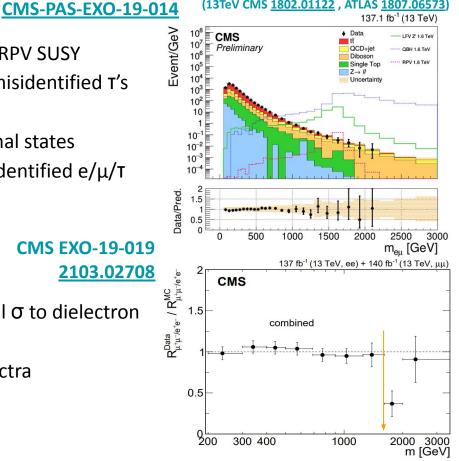

#### Lepton flavor anomalies test in $Z{\rightarrow}e\mu$



ATLAS-CONF-2021-042 3

- LFV has been observed in the neutrino sector
  - Charged-LFV can be **strong hints of New Physics**
  - $\circ$  Search for cLFV decay  $\mathbf{Z} \rightarrow \mathbf{e} \boldsymbol{\mu}$  process
- BDT is trained in leading jet  $p_{\tau}$ ,  $p_{\tau}^{miss}$  and  $p_{\tau}^{e\mu}$
- Use ratio to the average of observed dielectron and dimuon events to reduce systematic uncertainties
- Stringent direct constraint BR( $Z \rightarrow e\mu$ ) < 3.04 × 10<sup>-7</sup>
  - Previous LEP constraint: BR(Z  $\rightarrow$  eµ) < 1.7 × 10<sup>-6</sup>
  - Indirect searches  $\mu \rightarrow eee \text{ or } e\gamma : BR(Z \rightarrow e\mu) < 5 \times 10^{-13}$
  - Also, ATLAS has the strongest limits on Z->IT : BR ( $Z \rightarrow e\tau$ ) < 5.0 × 10<sup>-6</sup>, BR( $Z \rightarrow \mu\tau$ ) < 6.5 × 10<sup>-6</sup>

ATLAS arXiv:2105.12491






#### Flavor anomalies test in TeV scale

- $X \rightarrow e\mu/eT/\mu T$  search
  - targeting X = LFV Z', QBH, stauneutrino in RPV SUSY Ο
  - Two high  $p_{\tau}$  lepton selected and remove misidentified T's Ο by applying a  $m_{\tau}$  requirement
  - Use collinear mass distribution in  $eT/\mu T$  final states Ο
  - Data-driven estimate of non-prompt/misidentified  $e/\mu/T$ Ο coming from jets
- In Z' search
  - First attempt to test LFV at TeV region Ο
  - Using flavor ratio 'R' of dimuon differential  $\sigma$  to dielectron Ο w.r.t dilepton mass.
  - The ratio is taken from unfolded mass spectra Ο

$$R_{\mu^+\mu^-/e^+e^-} = \frac{\mathrm{d}\sigma(q\overline{q}\to\mu^+\mu^-)/\mathrm{d}m_{\ell\ell}}{\mathrm{d}\sigma(q\overline{q}\to\mathrm{e^+e^-})/\mathrm{d}m_{\ell\ell}}$$



15

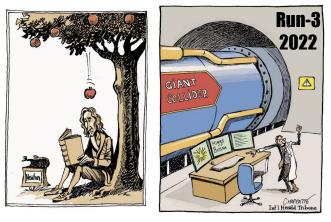
March 11 2022

(13TeV CMS 1802.01122,

1807.06573

JeongEun Lee (KNU)

**Exotic Searches at the LHC** 



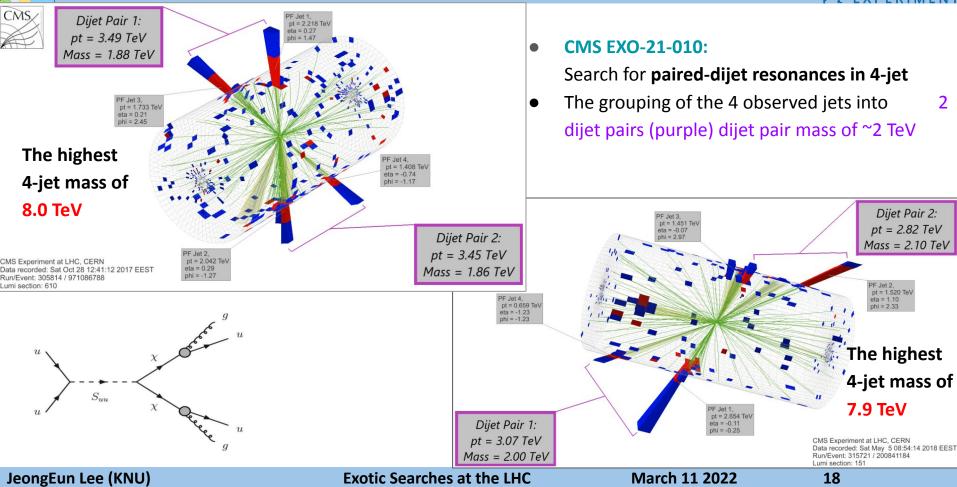

### Conclude



- Large number of BSM scenarios and signatures explored with LHC Run2 data.
  - Sensitivity significantly improved with new reconstruction & analysis techniques.
  - Several new models/signatures explored for the first time !
- No clear evidence for BSM yet, but significantly extended range of model phase-space excluded.
- Still expanding on results with
  - More data and more exotic models
  - More exotic signatures in detector
  - More exotic analysis techniques
- Stay tune for upcoming LHC Run-3 era !!

Collisions That Changed The World












#### **Event display for the highest 4-jet mass**





#### Paired dijet resonance - Run3



138 fb<sup>-1</sup> (13 Te'

CMS Preliminar

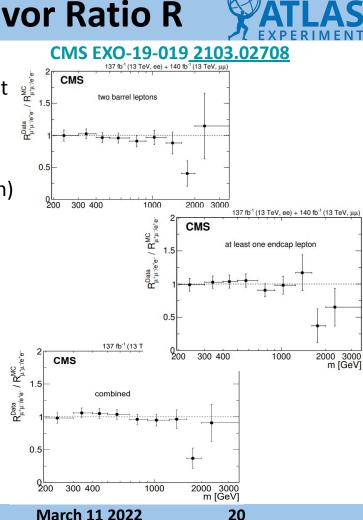
19

- What is the expectation with Run-3? (resonant)
  - In Run III expect increase of center of mass energy from 13 TeV to 13.6 TeV and increase of luminosity from 140 to 500 fb-1
  - For center-of-mass energy at 13.6 TeV and the same luminosity expect the signal and background cross section to increase ~ 2.2 times (at 8.6 TeV), and there is no more LEE for events at ~8.6 TeV. As a result we expect an improvement in the local significance by a factor of 1.5.

**Exotic Searches at the LHC** 

• In backup: COM = 14 TeV estimates

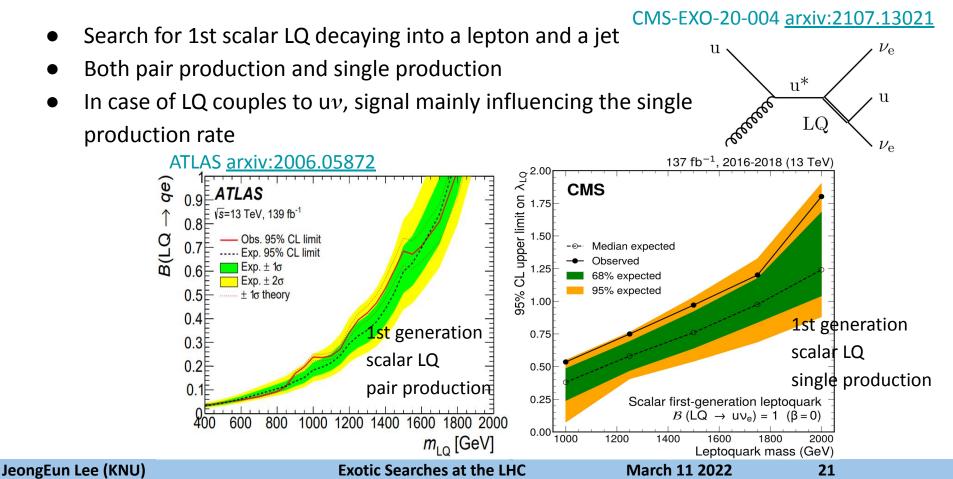
| Run III Data                   |                                                     | Full Run II and Run III data   |                                                        | 10 <sup>-2</sup> 0.9                                                                                                                      |
|--------------------------------|-----------------------------------------------------|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Luminosity (fb <sup>-1</sup> ) | Significance at 8.6<br>TeV (standard<br>deviations) | Luminosity (fb <sup>-1</sup> ) | Significance at<br>8.6 TeV<br>(standard<br>deviations) | $10^{-3} - 30^{-1} - 0.5$ $10^{-4} - 10^{-1} - 10^{-1}$ $10^{-5} - 10^{-5} - 10^{-2} - 10^{-2}$ $2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10^{-2}$ |
| 30                             | 2.8                                                 |                                |                                                        | Four-jet resonance mass [TeV]                                                                                                             |
| 70                             | 4.2                                                 | 140 (RunII)+30(RunIII)         | 3.2                                                    |                                                                                                                                           |
| 140                            | 5.0                                                 | 140 (RunII)+70(RunIII)         | 4.5                                                    |                                                                                                                                           |
| 140                            | 5.9                                                 | 140 (RunII)+140(RunIII)        | 6.1                                                    |                                                                                                                                           |
| 500                            | 11.2                                                | 140 (RunII)+500(RunIII)        | 11.3                                                   |                                                                                                                                           |


March 11 2022

JeongEun Lee (KNU)



#### Z' to dilepton Search - Flavor Ratio R


- Good agreement with SM prediction up to ~ 1.5 TeV Above 1.5 TeV, some deviations are observed, because slight excess in the dielectron channel.
- Chi-square test (MII > 400 GeV) is performed.
   17.9/7 for combined (two EB leptons + at least one EE lepton) case and corresponding **one-sided p-value is 0.012**
- No significant deviation from lepton flavor universality is observed.
- This search will be continued with Run 3 data improving the lepton flavor ratio measurement with log-likelihood ratio : bin-by-bin correlations are handled as nuisance parameters of the likelihood → gives better estimation of the uncertainty at high mass



**Exotic Searches at the LHC** 

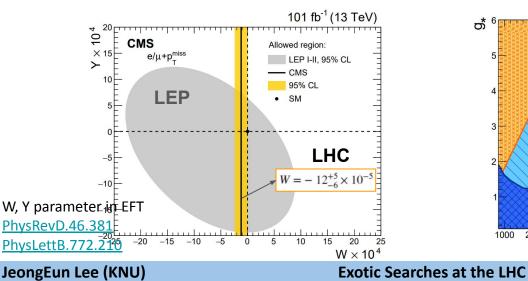








#### Two new approaches in lv

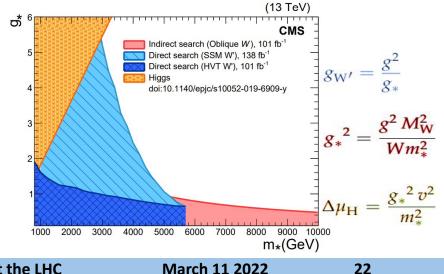



#### **Effective Field Theory Approach**

EFT approach quantifies potential deviations from the SM expectations through the *W* parameter

$$\left|\frac{P_W}{P_W^{(0)}}\right|^2 = \left(1 + \frac{(2t^2 - 1)W}{1 - t^2} + \frac{t^2Y}{1 - t^2} - \frac{W\left(q^2 - m_W^2\right)}{m_W^2}\right)^2$$

Modified SM predictions by **reweighting method.** Compared with data and set the W-parameter




#### Composite Higgs boson models



Input for this reinterpretation comes in 3 complementary ways

- direct W' search : W' boson to be a composite resonance. The gauge coupling to the new constituents is g\*
- 2. **indirect EFT approach** : *W* parameter is used to quantify deviations from the SM.
- 3. <u>Higgs</u> : NP modify SM prediction of H prod/decay modification can be scaled.

