SUSY Searches at LHC

Chen (UTokyo/ICEPP) 110

o.b.o ATLAS and CMS Collaboration

Ф

La Thuile 2022 Les Rencontres de Physique de la Vallée d'Aoste

270 **270**

11 Mar<u>92</u>022 180 180

4

³⁶⁰ **360**

Why SUSY?

Why SUSY?

Shion Chen

Why SUSY?

Why SUSY is a big deal among many? → GUT

Unblinded >500 times and no SUSY found

Strategy - Signature-based analyses

Shion Chen

Shion Chen

Signal characterization → Simplified model approach

Shion Chen

SUSY Searches at LHC - La Thuile 2022

4-1

Signal characterization → Simplified model approach

Signal characterization → Simplified model approach

Name	Target Signature	Ref.	Experiment
RPC searches			
EWK all-hadronic	Generic EWKino pair production	<u>Phys. Rev. D 104 112010 (2021)</u> (arXiv: 2108.07586)	ATLAS
		<u>CMS-PAS-SUS-21-002</u>	CMS
EWK di-higgs 4b	(Higgsino→h+Gravitino LSP) ² etc.	arXiv: <u>2201.04206</u>	CMS
Stau all-hadronic	(Stau → τ + χ̃ ₁ ⁰)²	<u>CMS-PAS-SUS-21-001</u>	CMS
Photon + p _T ^{miss}	(Gluino→ $\tilde{\chi}_{1^0}$ → (γ/Z/h)+Gravitino LSP) ²	ATLAS-CONF-2021-028	ATLAS
Zh→2L+2b+p _T ^{miss}	h→ $\tilde{\chi}_{1^0}\tilde{\chi}_{2^0}$ → a $\tilde{\chi}_{1^0}\tilde{\chi}_{1^0}$ @NMSSM	<u>JHEP 01 063 (2022)</u> (arXiv: <u>2109.02447</u>)	ATLAS
RPV searches			
eµ-asymmetry	RPV smuon single-prod.	arXiv: <u>2112.08090</u>	ATLAS

Full list of the results ATLAS: <u>Publication</u> / <u>Preliminary</u> / <u>Summary</u>

CMS: <u>Publication</u> / <u>Preliminary</u> / <u>Summary</u>

Shion Chen

<u>Target:</u> Generic EWKino pair production w/ large Δm(heavy, light)

Target: Generic EWKino pair production w/ large Δm(heavy, light)

Large Δm (heavy, light) \rightarrow charginos/neutralinos don't mix much

Shion Chen

EWK all-had - Overview

ATLAS: <u>Phys. Rev. D 104 112010 (2021)</u> CMS: <u>CMS-PAS-SUS-21-002</u>

Hadronic final state = More signals & More BGs

Usually promising at large- Δm as it can afford tight cuts to cope with the BG.

BUT! Wasn't the case for the EWK production for a long time!

due to the small xsec at high mass

Shion Chen

EWK all-had - Overview

ATLAS: <u>Phys. Rev. D 104 112010 (2021)</u> CMS: CMS-PAS-SUS-21-002

Only feasible recently thanks to Large full-Run2 datasets + boosted boson jet tagging. First EWKino search using "qqqq" final state at LHC!

Boosted boson jet tagging

ATLAS:

W/Z→qq: <u>ATL-PHYS-PUB-2020-017</u> Z/h→bb: <u>ATL-PHYS-PUB-2017-010</u> CMS: <u>JINST 15 (2020) P06005</u>

Run: 284484 Event: 993033541 2015-11-03 12:20:12 CEST

An event in the ATLAS search signal region

EWK all-had - Selection & BG

ATLAS: <u>Phys. Rev. D 104 112010 (2021)</u> CMS: <u>CMS-PAS-SUS-21-002</u>

Selection: $p_T^{miss} > 200 \text{GeV}, \Delta \phi(E_T^{miss}, \text{jets}) > 0.3 - 1.5, \text{ hard jet kinematics etc.}$

ATLAS: SRs segmented based on di-boson species (WW, WZ, Wh, ZZ, Zh, OR of them)

CMS: + binned in E_T^{miss}

<u>BG</u>: W($\rightarrow \ell \nu$)/Z($\rightarrow \nu \nu$)+jets ("0 resonance", 70-90%)

 $V(\rightarrow \ell v)V(\rightarrow qq)$ +jets, ttbar etc. ("1 resonance", 10-25%)

 $Z(\rightarrow vv)VV(\rightarrow qqqq)$, ttbar+X etc. ("irreducible", <10%)

- ATLAS: VRs in 1-lepton & 1-photon regions
- **CMS:** VRs defined by loosening the boson tagging

>=1 "Fake boson jets"

Semi-data-driven. CR = boson tagging inverted

=2 real boson jets
Directly estimated from MC

No significant excess found

Shion Chen

EWK all-had - "Less-simplified" model limits

Phys. Rev. D 104 112010 (2021)

e.g. Bino LSP

	Model	Production	Final states	Branching ratio	
	$(\widetilde{W},\widetilde{B})$	$\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0$	WW, WZ, Wh	$ \begin{aligned} & \mathcal{B}(\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^0) = 1 \\ & \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \text{ scanned} \end{aligned} $	
	$(\widetilde{H},\widetilde{B})$	$\widetilde{\chi}_1^{\pm} \widetilde{\chi}_1^{\mp}, \widetilde{\chi}_1^{\pm} \widetilde{\chi}_2^0, \\ \widetilde{\chi}_1^{\pm} \widetilde{\chi}_3^0, \widetilde{\chi}_2^0 \widetilde{\chi}_3^0$	WW, WZ, Wh, ZZ, Zh, hh	$\begin{aligned} & \mathcal{B}(\widetilde{\chi}_1^{\pm} \to W \widetilde{\chi}_1^0) = 1 \\ & \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \text{ scanned} \\ & \mathcal{B}(\widetilde{\chi}_3^0 \to Z \widetilde{\chi}_1^0) = 1 - \mathcal{B}(\widetilde{\chi}_2^0 \to Z \widetilde{\chi}_1^0) \end{aligned}$	
Consider all the prod. modes				Scan the floating BRs (or the MSSM parameters dictating f	them)
		Simultaneousl different di-bo	y target son signals		

Phys. Rev. D 104 112010 (2021)

✓ Realistic limit for these particular mass hierarchies

10-2

Phys. Rev. D 104 112010 (2021)

Bonus: Re-interpretation on the "Z/h-funnel" DM scenarios $HH \rightarrow BB + XX (H; \tilde{\chi}_{1}^{+} \chi_{2}^{0} \chi_{3}^{0}, \tilde{B}; \tilde{\chi}_{1}^{0}, X=W/Z/h)$ **Strongest limit for tanß>10** ncluding direct experiments $600 \quad ATLAS \quad (\bar{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}, All limits at 95% CL)$ $500 \quad Expected limit (±1 \sigma_{exp}) \quad B(\tilde{\chi}_{2}^{0} \rightarrow Z\tilde{\chi}_{1}^{0}) = 50\%$ $400 \quad B(\tilde{\chi}_{2}^{0} \rightarrow Z\tilde{\chi}_{1}^{0}) = 50\%$ $400 \quad B(\tilde{\chi}_{2}^{0} \rightarrow Z\tilde{\chi}_{1}^{0}) = 50\%$ - La Thuile 2022

Di-higgs(→4b) + p_T^{miss}

Dedicated searches for EWKinos decaying via di-higgs→4b

Selection: 3 or 4 b-tagged anti- k_t R=0.4 jets, binned in p_T^{miss} .

Two sub-categories:

◦ "**Resolved**": Targeting small Δm , reconstructing h→bb by pairing anti-k_t **R=0.4** jets.

Based on minimizing the mass diff. between the 2 higgs candidates.

◦ **"Boosted"**: Targeting larger Δm , reconstructing h→bb by tagging a single anti-k_t R=0.8 jets.

Deep learning bb-tagging: 90% efficiency for $h \rightarrow bb$ (5% for LF quark jets).

#(boosted higgs candidate) = 1 or 2.

Shion Chen

Di-higgs(→4b) + p_T^{miss}

arXiv: <u>2201.04206</u>

BG: ttbar+X, Z(→vv)+jets estimated by ABCD method

- Resolved: m_{bb} (window vs sideband) vs n_{b-jet} (2b vs 3-4b)
- Boosted: m_H (window vs sideband) vs n_H (0 vs 1-2)

No significant excess found.

✓ Most stringent limit on a few models involving neutralinos with large BR(\rightarrow h) GGM Higgsino \rightarrow h+Gravitino LSP, Gluino \rightarrow heavy neutralino \rightarrow h+LSP etc.

CMS

eµ-asymmetry search

New analysis at LHC! arXiv: 2112.08090

Most of di-leptonic SM process: ρ ~1

- Experimental effects often bias to $\rho < 1$ (e.g. $e_{fake} > \mu_{fake}$) \rightarrow Search for $\rho > 1$
- Test of ρ on top of the cut & count at the SM tail → can differentiate the BSM model.

<u>Selection</u>: Large p_T^{miss} & large Σm_T selection \rightarrow Measure ρ in each bin of m_{T2} or H_P variable.

<u>BG</u>: ttbar, di-boson

 $H_{\rm P} \equiv |\vec{p}_{\rm T}^{e}| + |\vec{p}_{\rm T}^{\mu}| + |\vec{p}_{\rm T}^{j_1}|$

New analysis at LHC! arXiv: <u>2112.08090</u>

Known significant detector biases affecting ρ to max. the sensitivity

 \circ Muon reconstruction/ID efficiency (µ⁺ vs µ⁻) due to the toroidal magnet geometry

0.8

0.7

0.5

0.4

g_{an}

- Fake lepton estimation done separately for e/μ and $\frac{\mu}{\mu}$
- Validated in the CRs/VRs using both MC and data 0.9

No significant R>1 observed

• First & strongest limit set on the model as the function of λ'_{231}

Shion Chen

ATLAS √s = 13 TeV, 139 fb⁻¹

not etcluded

4

et childed

Ways forward

ED'AOS)

26

4 THUILE

A is in

To our theorist friends: Any final states unexpectedly insensitive to your models?

More re-interpretation materials/tools are becoming available

Comments to a few commonly held connotations about SUSY searches

\circ SUSY that can be probed in LHC is dead \rightarrow Wrong

Many searches are stat-limited \rightarrow More data always helps.

But it takes much more time to double the data size (sad but we should be correctly sad).

Shion Chen

\circ SUSY that can be probed in LHC is dead \rightarrow Wrong

Many searches are stat-limited \rightarrow More data always helps.

But it takes much more time to double the data size (sad but we should be correctly sad).

○ Low-mass SUSY is dead → Wrong

Compressed mass spectra in the EWK sector is vibrantly alive.

Build lepton colliders or we do better (next page).

\circ SUSY that can be probed in LHC is dead \rightarrow Wrong

Many searches are stat-limited \rightarrow More data always helps.

But it takes much more time to double the data size (sad but let's be sad correctly).

○ Low-mass SUSY is dead → Wrong

Compressed mass spectra in the EWK sector is vibrantly alive.

Build lepton colliders or we do better (next page).

○ I don't believe SUSY anymore bc. I searched and didn't find it → Fine, but logically wrong

Nobody is this explicit but it seems an underlying mentality across the community recently.

150GeV SUSY is viable!

Not even in a contrived way e.g.

- \circ (Pseudo-) pure higgsino LSP
- Compressed slepton-/stau-bino (muon g-2, bino DM co-annihilation)

Upcoming LHC-Run3 is exciting but just adding more data won't help much.

New schemes wanted! e.g. yy-collision, semi-long-lived signatures, loop?, bound-state?

Shion Chen

The first round of full Run2 results becoming complete

Now most of the Run1 searches have the Run2 updates.

No sign of promptly decaying SUSY yet

Stick around the talks today for the long-lived part! J. Burr & I. Siral & D. Trischuk.

The search scope has been increasingly extended

New handles: Charge asymmetry, tailored jet tagging technique etc. More non-minimal models: NMSSM, Stealth SUSY etc.

LHC Run3 is coming!

Will ~double the data statistics in 3 years, with a bit higher \sqrt{s} (13TeV \rightarrow 13.6TeV), better detector performance, reconstruction techniques and measurements.

It's double but only double

Some most appealing & challenging scenarios don't get addressed much by the increased data stats. Time to think outside of the box to fill those gaps...!

Reminder: 100GeV higgsino, 150GeV slepton, 1TeV gluino (RPV) are all alive

Backup

A Typical SUSY Analysis

Signal region[†] (SR): Test SM expectation vs data

- \circ Look for subtile excesses on the SM tail. Typycally H_T := Σp_T (jet), m_{eff} := $p_T^{miss} + H_T$, m_T, m_{T2} etc.
- \circ Either one-bin or multi-bin.

BG estimation:

○ Irreducible BG → "semi-data-driven" method

MC normalized in the control regions (CRs) nearby SRs made by inverting cuts of variables well modeled by MC.

\circ Reducible BG \rightarrow fully (or more) data driven method

e.g. Fake lepton estimation:

Measure the "fake rate" in pre-selection regions and apply it to the "anti-ID leptons" in the SR.

• Validation regions (VRs)

Testing the methodology and assigned uncertainties.

† ATLAS nomenclature. CMS calls "search regions".

Shion Chen

Boosted boson jet tagging

ATLAS: Anti-kt R=1.0 + multi-dim cuts

W/Z→qq: p⊤-dependent cuts in jet mass, energy correlation, n_{Tracks} <u>ATL-PHYS-PUB-2020-017</u>

Z/h→bb: jet mass cut

ATLAS Simulation

70 Preliminary

80r

60

50

D Jet Rejection

+ sub-track-jet b-tagging

Higgs Jet ∈=0.5 single b-tagging

 $76 \text{ GeV} < m_{iet} < 146 \text{ GeV}$

R=0.2 Track Jet VR Track Jet

ExKt Subjet

ATL-PHYS-PUB-2017-010

Shion Chen

SUSY Searches at LHC

Model	Production	Final states	Branching ratio
$(\widetilde{W},\widetilde{H})$	$\widetilde{\chi}_2^{\pm} \widetilde{\chi}_2^{\mp}, \widetilde{\chi}_2^{\pm} \widetilde{\chi}_3^0$	WW, WZ, Wh, ZZ, Zh, hh	Determined from $(M_2, \mu, \tan \beta)$
$(\widetilde{H},\widetilde{W})$	$\widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{\mp}, \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{2}^{0}, \\ \widetilde{\chi}_{2}^{\pm}\widetilde{\chi}_{3}^{0}, \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{3}^{0} $	WW, WZ, Wh, ZZ, Zh, hh	Determined from $(M_2, \mu, \tan \beta)$

Too many floating BRs. What do we do?

→ Parameter scan within a pMSSM sub-space: 3D scan in (M₂, μ , tan β).

EWK all-had - Limits on an Axino LSP model

arXiv: 2108.07586

• Inspired by a very consistent pursuit for "naturalness" (arXiv: 1407.1218)

Hierarchy problem → SUSY / EW naturalness → Light higgsino

Strong CP problem \rightarrow Axion \rightarrow (SUSY should exist) \rightarrow Axino

- \circ Axino LSP: Interesting in the context of DM
- \circ Large Δm favors short-lived higgsino

First dedicatedly probed at LHC

Excluded up to max. 950GeV

eµ-asymmetry search (more plots)

Shion Chen

Photon+Jets+pT^{miss}

ATLAS-CONF-2021-028

Inggo uccay into InvISSM singlet (2L+2b+pT^{miss})

- "a": additional higgs in the SM sector in NMSSM. $m(\tilde{\chi}_2^0) < m(a) < m(\tilde{\chi}_1^0)$.
- Zh production, $Z \rightarrow \ell \ell$, $h \rightarrow \tilde{\chi}_{2^0} \tilde{\chi}_{1^0}$
- \circ Di-bjet resonance peaking at m(a).
- Main BG: $Z(\rightarrow \ell \ell) + b$ -jets, ttbar

m_{jj} template derived using CR data + normalized using MC

 \circ No significant excess found.

Shion Chen

arXiv: 2109.02447

How to read the summary plots

These numbers are derived for very specific conditions! Be sure what they are when quoting "~GeV is excluded"!

e.g. When finding the $\tilde{\chi}_{1}{}^{\pm}\,\tilde{\chi}_{2}{}^{0}\,\text{limits}$

This is about:

Wino NLSP→ (stable) bino LSP

 σ is ~1/4 if Higgsino

Simplified model

BR($\tilde{\chi}_2^0 \rightarrow Z \tilde{\chi}_1^0$)=100% assumption is unrealistic when $\Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) > m_h$

950GeV (if sleptons are not relevant) 1.35 TeV (if $m_{slepton}$ is exactly between m_{LSP} and $m(\tilde{\chi}_2^0)$)