Constraining the Top Yukawa Coupling in tH Production with the ATLAS Experiment at the LHC

La Thuile 2022

Tom Carter : thomas.michael.carter@cern.ch

The Top Yukawa Coupling

- Yukawa coupling, Y, between Higgs and fermions.
- Strength of Yukawa coupling in SM directly proportional to fermion mass.
- Fundamental parameters of the SM.
- Top quark heaviest particle in SM; largest coupling strength to Higgs.

What do we know already?

- **Direct** constraints from ttH production, not sensitive to sign.
- $\kappa_t = -1$ not yet directly excluded by ATLAS

 K_{t}

-1.5

_1

-0.5

 $\kappa_t = Y_t^{obs} / Y_t^{SM}$

0

0.5

1.5

Parameter value

2

The *k* Framework

- Higgs coupling strength to other SM particles parameterised using κ modifiers.
- $\kappa_i^2 = \sigma_i / \sigma_i^{SM}$, $\kappa_i^2 = \Gamma_i / \Gamma_i^{SM}$
- Sensitivity to κ_t sign from loops and directly.
- Not using loop processes lets us directly probe κ_t .

Production	Resolved modifier
$\sigma(ggF)$	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$
$\sigma(gg \to ZH)$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$
	$-0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$
$\sigma(tHW)$	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$
$\sigma(tHq)$	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$
Partial decay width	
Γ^{gg}	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$
	$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$
$\Gamma^{\gamma\gamma}$	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$
	$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$
$\Gamma^{Z\gamma}$	$1.118\kappa_W^2 - 0.125\kappa_W\kappa_t + 0.004\kappa_t^2 + 0.003\kappa_W\kappa_b$

3

The tH Process

- As opposed to ttH, tH is sensitive to sign of top Yukawa coupling.
- Sensitivity from interference between possible diagrams.
- Use process to directly exclude

 $\kappa_t = -1$ in ATLAS.

The H $\rightarrow \gamma\gamma$ Couplings Analysis Overview

% of Higgs production at LHC

- Full Run 2 ATLAS dataset 139 fb⁻¹.
- $H \rightarrow \gamma \gamma$ decay channel, fit in $m_{\gamma \gamma}$ spectrum.
- Measure key Higgs production cross-sections.
- How well can we constrain κ_t ?

5

Categorisation Overview

6

Aims:

- Split events into categories sensitive to STXS 1.2 bins.
- Low correlation & high sensitivity.

Approach:

- Two "layered" categorisation:
 - Multiclass BDT: separate all signal classes.
 - **Binary BDT**: reject nonresonant background.

Key Categorisation Components

Top Reconstruction

- BDTs trained with $t\bar{t}H$ sample, using the XGBoost package
- Reconstructs up to two top candidates per event.
- Top candidate variables play a key role in categorisation performance for tH.
- Key in separating $t\overline{t}H$ and tH.

Key Categorisation Components

Multiclass D-Optimality (signal vs signal)

- Novel procedure to decide on **Multiclass BDT** category boundaries.
- Conduct counting experiment for each categorisation option.
- Minimise the determinant of the covariance matrix.
- Results in smallest overall uncertainty and correlation across crosssection measurement.

Key Categorisation Components

Top Binary BDTs (signal vs bkg)

- Three binary BDTs trained using XGBoost
- Separate top processes from nonresonant background.
- Make use of low level variables, including top candidate variables.

Categorisation Purities

• Results in 88 categories with high purity to targeted STXS 1.2 bins.

STXS Region

Categorisation Purities

- Results in 88 categories with high purity to targeted STXS 1.2 bins.
 - **ATLAS** Simulation Preliminary $H \rightarrow \gamma \gamma$, $\sqrt{s}=13$ TeV, $m_{\perp}=125.09$ GeV

Results

- Results consistent with SM
- World-best tH SM sensitivity, $\sigma_{tH} < 8.3 \times \sigma_{tH}^{SM}$
- Lower than $12 \times \sigma_{tH}^{SM}$ expected for $\kappa_t = -1$ hypothesis [LHC Higgs XS 4]
- Low correlation between tH and $t\bar{t}H$

Higgs Combination

- Combine results in different Higgs decay channels:
 - $H \rightarrow \gamma\gamma, ZZ^*, WW^*, \tau\tau, b\bar{b}, \mu\mu, inv$
- Contributions from $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$ not considered
- Majority of sensitivity comes from tH in $H \rightarrow \gamma \gamma$ channel
- Small contribution from gg \rightarrow ZH loop
- We can exclude negative values of κ_t at 2.9 σ (2.7 σ) obs (exp)!

Summary

- Top Yukawa coupling Y_t is one of the 25 fundamental parameters of the Standard Model.
- Single-top Higgs process (tH) extremely sensitive to the sign of κ_t .
- $H \rightarrow \gamma \gamma$ analysis can set world-best constraint on $\sigma_{tH} < 8.3 \times \sigma_{tH}^{SM}$
- This sensitivity allows us to exclude negative κ_t at 2.9 σ (2.7 σ) obs (exp)

Backup

Combination Generic Model

- gg \rightarrow H and H $\rightarrow \gamma\gamma$ loops are not resolved
- Using effective couplings κ_g and κ_γ

ATLAS + CMS Run1 Combination

- κ_t was fixed to be positive
- Probed the relative sign of κ_V and κ_t

ATLAS + CMS Run1 Combination

Simplified Template Cross-Sections

- Consistency in measurements across analyses and experiments for combinations.
- Targets Higgs production mode phase spaces to reduce theoretical uncertainty.

STXS 1.2

D-Optimality

- Adjust weights applied to BDT category scores.
- Minimise using Powell algorithm.
- Does not need to be differentiable.
- BDT categorises events based on maximal score.

$$S \circ \vec{w} = (s_{ij} \cdot w_j) = \begin{bmatrix} s_{11} \cdot w_1 & \cdots & s_{1M} \cdot w_M \\ \vdots & \ddots & \vdots \\ s_{N1} \cdot w_1 & \cdots & s_{NM} \cdot w_M \end{bmatrix}$$

Results: 27 STXS

Results: 27 STXS

ATLAS-CONF-2020-026 ATLAS Preliminary Syst. SM H Total Stat. $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ Total Stat. Syst. $H \rightarrow \gamma \gamma$, $m_{\mu} = 125.09 \text{ GeV}$ +1.23 (+1.15 -1.08 (-1.02, +0.44 $qq \rightarrow Hqq \leq 1J$ 1.55 -0.38 +1.84 (+1.70 -1.72 (^{+1.70}, +0.71 $qq \rightarrow Hqq \ge 2J \ 0 < m_{11} < 60 \parallel 120 < m_{11} < 350$ 3.16 -0.57 , +0.91 +0.25 +0.95 qq→Hqq ≥2J 60 < m_, < 120 0.76 (-0.80, -0.24 -0.83 +0.73 , +0.62 +0.38 $qq \rightarrow Hqq \ge 2J 350 < m_{H} < 700, 0 < p_T^H < 200$ 0.79 (-0.56, -0.32 -0.65 +0.28 +0.21 +0.35 $qq \rightarrow Hqq \ge 2J m_{II} > 700, 0 < p_T^H < 200$ 1.09 -0.31 (-0.26, -0.17 , +0.41 +0.46 +0.20 $qq \rightarrow Hqq \ge 2J m_{11} > 350, p_{T}^{H} > 200$ 1.35 -0.40 (-0.36, -0.17 +0.71 -0.70 (± 0.67, +0.22, $qq \rightarrow Hlv \ 0 < p_{\downarrow}^V < 150$ 2.41 -0.19 +1.16 -0.99 (^{+1.14} (_{-0.97} , +0.19 $qq \rightarrow Hlv p_{+}^{V} > 150$ 2.64 -0.17 +0.99 , +0.96 +0.26HII $0 < p_{_{+}}^{V} < 150$ -1.08 (-0.85, -0.20 -0.87 +1.11 +1.10 +0.16Hll p₊^V > 150 -0.10 -0.93 -0.91, -0.19 +0.80+0.21+0.83 $ttH \ 0 < p_{T}^{H} < 60$ 0.76 -0.70 (-0.68 -0.17 +0.53+0.54 +0.10 $ttH 60 < p_{T}^{H} < 120$ 0.72 -0.46 -0.46 -0.08 +0.63 +0.61 +0.17ttH 120 < p_{_{\rm T}}^{\rm H} < 200 1.06 -0.52, -0.54 -0.14 +0.53 +0.52+0.12 $ttH p_{\tau}^{H} > 200$ 0.96 -0.46 .0.45 -0.10 , +3.13 +0.97 +3.28 tΗ 0.85 -2.41 -0.98 ¹-2.21[,] -2 2 0 6 Δ 8 $\sigma^{\gamma\gamma}/\sigma^{\gamma\gamma}_{SM}$ 22

- Results consistent with SM (p-value 60%).
- ttH observed (expected) sensitivity 4.3σ (4.7 σ)
- First analysis to keep tH as separate POI.
- Upper limit on $\mu_{tH} < 8.2$

Results: STXS Correlations

Results: Top Pulls

24

Signal & Background Modelling

Signal:

- Fit Double-sided Crystal Ball function to MC in each analysis category.
- Parameters are then fixed in final fit to data.

Background:

- Data driven!
- Fit analytical function to data sideband.

