HH production, rare Higgs decays and Higgs BSM in ATLAS and CMS

Simone Gennai on behalf of ATLAS and CMS Collaborations

https://home.cern/solidarity-ukraine

Solidarity with Ukraine

The CERN community stands in solidarity with the people of Ukraine, a CERN Associate Member State

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

ATLAS and CMS detectors

3

10 years from the discovery

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

Simone.Gennai@mib.infn.it

Double Higgs boson production

Direct access to the Higgs self coupling

Hence important information on the shape of the Higgs potential

Double Higgs boson production

- Several channels have been updated recently with full Run2 data sample for the non resonant analysis
 - D ATLAS:
 - \Box 2b2 γ ,2b2 τ and their combination: <u>ATLAS-CONF-2021-052</u>
 - CMS:
 - \Box 4b, 2b2 τ , 2b2 γ , 4leptons
- Analysis sensitivity has improved substantially wrt previous combination also thanks to extensive use of state-of-the-art machine learning techniques for object identification

Double Higgs boson production

- Several channels have been updated recently with full Run2 data sample for the non resonant analysis
 - ATLAS:
 - \Box 2b2 γ ,2b2 τ and their combination: <u>ATLAS-CONF-2021-052</u>
 - CMS:
 - ^D 4b, 2b2 τ , 2b2 γ , multileptons
- Analysis sensitivity has improved substantially wrt previous combination also thanks to extensive use of state-of-the-art machine learning techniques for object identification

ATLAS projection to HL-LHC

Results from latest combination yield better projection for HL-LHC than previous one

Uncertainty scenario	Likelihood scan 1 σ CI	Likelihood scan 2σ CI
No syst. unc.	[0.6, 1.5]	[0.3, 2.1]
Baseline	[0.5, 1.6]	[0.0, 2.7]
Theoretical unc. halved	[0.2, 2.2]	[-0.4, 5.6]
Run 2 syst. unc.	[0.1, 2.5]	[-0.7, 5.7]

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

CMS latest results for:4b, multileptons, $2b2\tau$

NFN

Istituto Nazionale di Fisica Nucleare

4b boosted topology: 2 large radius jets. Very sensitive to k_{2V}

0.6 < *k*_{2*V*} < 1.4 at 95% C.L.

Few details on $HH \rightarrow bb\tau\tau$

Events 10⁵ 10⁴

10³

10²

11

- □ Three different final states considered: $\tau_{\mu}\tau_{h}$, $\tau_{e}\tau_{h}$, $\tau_{h}\tau_{h}$
 - Plus a number of categories designed to extract the signal as well as constraint bkg uncertainties

Pre-fit expected $\log_{10}(S/\sqrt{B})$

Higgs boson rare decays

ATLAS CMS

Istituto Nazionale di Fisica Nucleare

VH→CC (BR: 2.88x10⁻²)

ATLAS best limit is 26 x SM

- [□] But combining VH→cc with VH→bb measured $|k_c/k_b|$ to be < 4.5: <u>HIGG-2021-12</u>
 - Evidence for VW->cq decay, for more details see <u>Antonio Jacques Costa talk</u>
- CMS best limit is 7.7 x SM
 - □ Best stringent limit on 1.1 < $|k_c|$ < 5.5 and first observation of VZ→cc at a hadronic collider : <u>HIG-21-008</u>

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

VH→cc: few more details

- CMS adopted the choice of looking for boosted events and even if they yield only 5% of signal events they allow a better discrimination
- A special c-jet tagger specialised in boosted jets has been developed
 - Dense environment, large multiplicity. Deep neural network based on the ParticleNet algorithm
 - It achieves a factor ~3 better background rejection wrt previous tagger
- Signal is extracted with the help of a DNN classification and a fit to the invarinat mass of the two c-jets
 - For the resolved case the DNN distribution is used a the place of the cc invariant mass

 $H \rightarrow \ell \ell \gamma$

- □ ATLAS claimed the first evidence for this final state : Phys. Lett. B 819 (2021)
 - \square $m_{\ell\ell} < 30 \,\mathrm{GeV}$: 3.2 σ with a best fit $\mu = 1.5 \pm 0.5$
 - \square 9 different categories, signal is extracted fitting the $m_{\ell\ell\gamma}$ distribution
- Due to the boost of the di-electron system a special trigger and identification has been developed
- ^I CMS has a similar analysis but focused on the $Z\gamma$ channel (2.7 sigma excess): <u>HIG-19-014</u>

 $H \rightarrow \ell \ell \gamma$

- □ ATLAS claimed the first evidence for this final state : Phys. Lett. B 819 (2021)
 - $\square \quad m_{\ell\ell} < 30 \, {\rm GeV}: 3.2\sigma \, {\rm with \ a \ best \ fit} \ \mu = 1.5 \pm 0.5$
 - \square 9 different categories, signal is extracted fitting the $m_{\ell\ell\gamma}$ distribution
- Due to the boost of the di-electron system a special trigger and identification has been developed
- ^I CMS has a similar analysis but focused on the $Z\gamma$ channel (2.7 sigma excess): <u>HIG-19-014</u>

Events display for H $\rightarrow \ell \ell \gamma$

Beyond Standard Model

HH from heavy scalar decay

ATLAS-CONF-2021-052

NFN

Istituto Nazionale di Fisica Nucleare

20

More on BSM Higgs bosons

- □ LFV : <u>Phys. Rev. D. (2021) 104 032013</u>
 - ^D BR(H $\rightarrow \mu \tau$) < 0.15% @ 95% CL
 - ^D BR(H $\rightarrow e\tau$) < 0.22% @ 95% CL
- Search for extra scalar particles in a wide range of masses
 - Motivated by several extension of the SM which predict a larger number of bosons
 - Limits on cross sections and BR usually interpreted in 2HDM
 - Most famous ones being the MSSM, a number of benchmarks model has been prepare by the LHC WG: <u>LHCHWG-2021-001</u>
 - The precise measurement of the SM Higgs Boson couplings and mass, poses stringent limits to parameter space that has to include a SM-like Higgs Boson with a mass of 125 GeV
- Mixing of the SM Higgs bosons with a dark sector mediator is also a prolific field of research

$$\begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \to H_{SM}$$
$$\begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} + \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} \to h, H, A, H^{\pm}$$

$$\begin{pmatrix} \phi_1^+ \\ \phi_1^0 \end{pmatrix} + \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix} + s \to h_{(1,2,3)}, a_{(1,2)}, h^{\pm}$$

Charged Higgs

 H^{\pm}

W[±]

W

 $\mathrm{H}^{\pm\pm}$

- ^D Several models foresees H^{\pm} bosons: 2HDM are the most common, but others are interesting as well
 - ^D Some foresee also $H^{\pm\pm}$, like exotic model (Georgi-Machacek), where extra (charged) Higgs bosons couple to vector bosons only

W[∃]

ATLAS-CONF-2021-047 ATLAS-CONF-2021-037

NMSSM summary plots

INFN

Istituto Nazionale di Fisica Nucleare

23

- In the past 10 years we passed from a discovery phase to the measurement of the Higgs boson proprerties
 - □ Also with the hope to reveal something beyond the SM ...
 - Analysis complexity has improved also thanks to to extensive use of state-ofthe-art machine learning techniques for object identification
- We managed to measure final states not conciveable at the beginning of 2016
- Next challenge is the measurement of the Higgs boson self coupling
 - Out of reach for LHC, but it may not be so far away at HL-LHC

			•		
<u></u>	_	~~//		~n	$\sim \sim$
ev (1	_	HV			
CV .			. .		

Analysis	Final states	13 TeV <i>L</i> [fb ⁻¹]	BR (SM)	$\sigma_{\rm H} \times {\rm BR}({\rm H~decays})$	ATLAS/CMS references
cc		1 39, 35.9	2.9%	$26 \times SM, 70 \times SM$	ATLAS-CONF-2021-021, JHEP 03 (2020) 131
invisible		1 39, 35.9	~10 ⁻³		ATLAS-CONF-2020-052, PLB 793 (2019) 520
Ζγ	ee/μμ+γ	139, 35.9	~10 ⁻³	evd. μ = 1.5, 3.9 × SM	arXiv:2103.10322 (PLB 2021), JHEP 11 (2018) 152
$\mu^+\mu^-$		139, 137	~10 ⁻⁴	$2.2 \times SM$, evd. $\mu = 1.19$	PLB 812 (2021) 135980, JHEP 01 (2021) 148
				BR(H decays)	
ργ	$\pi^+\pi^-\gamma$	25.0	~10 ⁻⁵	8.8 × 10 ⁻⁴	
$\phi_{ m Y}$	$K^+K^-\gamma$	33.0	~10 ⁻⁶	4.8 × 10 ^{−4}	JHEP 07 (2018) 127
Ζρ	$ee/\mu\mu + \pi^+\pi^-$	137	~10 ⁻⁵	(1.04−1.31) × 10 ^{−2}	HIED 11 (2020) 020
Zφ	$ee/\mu\mu + K^+K^-$	137	~10 ⁻⁶	(3−4) × 10 ^{−3}	JHEP 11 (2020) 039
$Z\eta_c$		120	~10 ⁻⁵	$(\sigma \times BR = 110 \text{ pb})$	DDI 125 (2020) 221802
ZJ/ψ	$ee/\mu\mu$ + had	139	~10 ⁻⁶	$(\sigma \times BR = 100 \text{ pb})$	PRL 125 (2020) 221802
$\mathrm{J}/\psi~\gamma$	7	36.1, 35.9	~10 ⁻⁶	3.5 × 10 ^{−4} , 7.6 × 10 ^{−4}	PLB 786 (2018) 134, EPJ C 79 (2019) 94
$\psi(2S)\gamma$	- μ ⁺ μ ⁻ γ	36.1	~10 ⁻⁶	2.0 × 10 ^{−3}	NID 7 96 (2019) 124
Υ(nS)γ (n=1,2,3)		36.1	~10 ⁻⁹	(4.9, 5.9, 5.7) × 10 ^{−4}	PLB /86 (2018) 134
Υ]	27.5	~10 ⁻⁹	1.4 × 10 ⁻³	NID 707 (2010) 124011
J/ψ J/ψ	_ ^{4μ}	37.3	~10 ⁻¹⁰	1.8 × 10⁻³	PLB /9/ (2019) 134811
e^+e^-		139	~10 ⁻⁹ -10 ⁻¹⁰	3.6 × 10 ^{−4}	PLB 801 (2020) 135148

ATLAS HH->bbττ

		Observed	-2σ	-1σ	Expected	+1 σ	+2 σ
$ au_{ m had} au_{ m had}$	$\sigma_{ m ggF+VBF}$ [fb]	145	70.5	94.6	131	183	245
	$\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	4.95	2.38	3.19	4.43	6.17	8.27
$ au_{ m lep} au_{ m had}$	$\sigma_{ m ggF+VBF}$ [fb]	265	124	167	231	322	432
	$\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	9.16	4.22	5.66	7.86	10.9	14.7
Combined	$\sigma_{ m ggF+VBF}$ [fb]	135	61.3	82.3	114	159	213
	$\sigma_{ m ggF+VBF}/\sigma_{ m ggF+VBF}^{ m SM}$	4.65	2.08	2.79	3.87	5.39	7.22

	bb	WW	ττ	ZZ	ΥY
bb	34%				
WW	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

$H \rightarrow XX$ searches

ATLAS: <u>arXiv:2110.13673</u>

Limits on the BR H->xx can also be extracted

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

Simone.Gennai@mib.infn.it

Latest one from ATLAS

http://cdsweb.cern.ch/record/2779169/files/ATLAS-CONF-2021-037.pdf

- ^D ATLAS: 2 σ signal for a best μ value of 1.2 ± 0.6
 - D Phys. Lett. B 812 (2021)
- CMS : <u>first evidence</u> of this decay mode
 - ^D Best μ value: $1.19 \pm 0.40 \pm 0.17$ JHEP 01 (2021)
- 4 production modes: ggH, VBF, VH, ttH 137 fb⁻¹ (13 TeV) CMS Combined $\hat{\mu} = 1.19^{+0.44}_{-0.42}$ Combined best fit µ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ATLAS $H \rightarrow \mu\mu$ ---- SM expectation $\mu = 1.36^{+0.69}_{-0.61}$ VBF-cat. Total Stat. H-Total Stat. Syst. SM Syst. 68% CL 95% CL VH and ttH categories $5.0 \pm 3.5 (\pm 3.3, \pm 1.1)$ $\mu = 0.63^{+0.65}_{_{-0.64}}$ ggH-cat. m_H = 125.38 GeV ggF 0-jet categories $-0.4 \pm 1.6 \ (\pm 1.5, \pm 0.3)$ $\mu = 2.32^{+2.27}_{-1.95}$ ttH-cat. ggF 1-jet categories $2.4 \pm 1.2 (\pm 1.2, \pm 0.3)$ ggF 2-jet categories $-0.6 \pm 1.2 \ (\pm 1.2, \pm 0.3)$ $\mu = 5.48^{+3.10}_{-2.83}$ VH-cat. VBF categories $1.8 \pm 1.0 \ (\pm 1.0 \ , \pm 0.2)$ - $1.2 \pm 0.6 \ (\pm 0.6 \ , \ +0.2 \)$ Combined 15 -10-5 0 5 10 20 -2 0 2 8 6 4 Signal strength Best-fit µ

^D ATLAS: 2 σ signal for a best μ value of 1.2 ± 0.6

- D Phys. Lett. B 812 (2021)
- CMS : first evidence of this decay mode
 - ^D Best μ value: $1.19 \pm 0.40 \pm 0.17$ JHEP 01 (2021)
 - □ 4 production modes: ggH, VBF, VH, ttH

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

INFN

Istituto Nazionale di Fisica Nucleare

LFV Higgs decays

- Clearly interesting also in view of the BPH "anomalies"
 - a ATLAS and CMS has similar analyses, only CMS has one covering the full Run2 data
 - \square e-mu channel has tighter constraints from $\mu \rightarrow e\gamma$ process
- □ SM Higgs : Phys. Rev. D. (2021) 104 032013
 - ^D BR(H $\rightarrow \mu \tau$) < 0.15% @ 95% CL
 - ^D BR(H $\rightarrow e\tau$) < 0.22% @ 95% CL
- **BSM Higgs** : <u>JHEP (2020) 03 103</u>
 - Limits on the sigmaxBR as a function of the mass is set

VH→CC (BR: 2.88x10⁻²)

ATLAS best limit is 26 x SM

- [□] But combining VH→cc with VH→bb measured $|k_c/k_b|$ to be < 4.5: <u>HIGG-2021-12</u>
 - Evidence for VW->cq decay, for more details see <u>Antonio Jacques Costa talk</u>

CMS best limit is 7.7 x SM

□ Best stringent limit on 1.1 < $|k_c|$ < 5.5 and first observation of VZ→cc at a hadronic collider : <u>HIG-21-008</u>

36

VH \rightarrow *cc* **systematics**

Table 1: The relative contributions to the total uncertainty on the signal strength modifier μ for the VH(H $\rightarrow c\overline{c}$) process.

Uncertainty source	$\Delta \mu / (\Delta \mu)_{tot}$
Statistical	85%
Background normalizations	37%
Experimental	48%
Sizes of the simulated samples	37%
Charm identification efficiencies	23%
Jet energy scale and resolution	15%
Simulation modeling	11%
Luminosity	6%
Lepton identification efficiencies	4%
Theory	22%
Backgrounds	17%
Signal	15%