Higgs couplings and properties Duc Bao Ta¹ for the ATLAS and CMS collaboration

¹University of Mainz

La Thuile 2022 Les Rencontres de Physique de la Vallée d'Aoste (6-12 March 2022)

ATLAS-EXPERIMENT

u von ATLAS am LHC: Physik mit dem ATLAS-Expe

Precision Physics, Fundamental Interactions and Structure of Matter JOHANNES GUTENBERG UNIVERSITÄT MAII

Introduction

- Higgs couplings to other SM particles from cross section measurements in certain final states
 - Often targeted at several/all **production modes**

- More information on couplings using fiducial, STXS or differential cross sections
 - STXS bin: split Higgs production modes in genlevel bins in pT(H,V,Hjj,j), N(jets), m(jj)

Introduction

- Disentangle couplings in cross section results in terms of coupling modifiers (κ -framework) \mathcal{L}
 - Different schemes possible: generic, effective κ_{γ} , κ_{g} , $\kappa_{Z\gamma}$ (BSM in loops). **fundamental** κ_V and κ_f , etc.
 - Deviation of SM coupling κ!=1
- operators with their corresponding Wilson coefficient ci, bi or fi
 - Hint for BSM c_i , b_i or f_i !=0 \mathcal{L}_{S}
- $\sim \mathbf{\kappa}$ or operators and their corresponding Wilson coefficient $\sim \mathbf{c}_i$

$$\begin{aligned} \mathcal{L} &= \kappa_3 \frac{m_H^2}{2v} H^3 + \kappa_Z \frac{m_Z^2}{v} Z_\mu Z^\mu H + \kappa_W \frac{2m_W^2}{v} W_\mu^+ W^{-\mu} H \\ &+ \kappa_g \frac{\alpha_s}{2\pi v} G^a_{\mu\nu} G^{a\mu\nu} H + \kappa_{\gamma} \frac{\alpha}{2\pi v} A_{\mu\nu} A^{\mu\nu} H + \kappa_Z \frac{\alpha}{\pi v} A_{\mu\nu} Z \\ &+ \kappa_V \frac{\alpha}{2\pi v} \left(\cos^2 \theta_W Z_{\mu\nu} Z^{\mu\nu} + 2 W_{\mu\nu}^+ W^{-\mu\nu} \right) H \\ &- \left(\kappa_t \sum_{f=u,c,t} \frac{m_f}{v} f \overline{f} + \kappa_b \sum_{f=d,s,b} \frac{m_f}{v} f \overline{f} + \kappa_\tau \sum_{f=e,\mu,\tau} \frac{m_f}{v} f \overline{f} \right) \end{aligned}$$

Interpretation with effective field theory (SMEFT, HEL), higher-dimensional

$$S_{\text{MEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d6}} \frac{\mathcal{C}_{i}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j}^{N_{d8}} \frac{\mathcal{b}_{i}}{\Lambda^{4}} O_{i}^{(8)} + \dots, \quad \mathcal{L}_{\text{HEL}} = \mathcal{L}_{\text{SM}} + \sum_{j} \mathcal{O}[f_{j}] \Lambda^{2}$$

Anomalous couplings can be introduced by further **CP-odd** coupling modifiers

Latest, notable cross section results

Other results:

- $H \rightarrow WW$: ATLAS-CONF-2021-014 and CMS-PAS-HIG-19-017
- H→bb: ATLAS-CONF-2021-051 and JHEP 12 (2020) 085 **Higgs to top coupling:**
- Constraining the Top Quark Yukawa Coupling in tH Production with ATLAS, Thomas Carter
- ttH and tH production in multilepton channels with CMS, Clara Ramon Alvarez Higgs to charm coupling:
- Direct Search for the Higgs Boson to Charm Quarks Coupling at ATLAS, Antonio Jacques Costa **Rare decays:**
- Rare Higgs decays, Higgs BSM and HH, Simone Gennai

JGU

$H \rightarrow \gamma \gamma STXS$

- High statistics and good m(yy) resolution allows for fine binning
- Smoothly falling background in m(yy) spectrum
- Allows for binning in 27 STXS categories (even **ttH+tH**)

JHEP 07 (2021) 027 137 fb⁻¹ (13 TeV) Observed ±1σ (stat ⊕ syst) ±1σ (syst) SM prediction **VBF** ttH VH-lij high VBF-like low m_{ji} h VBF-like high m_{ji} VBF-like high m_{ji} WH lep 75 < p WH lep p ttH 60 < p¹ ttH 120 < p¹ ttH 200 < p¹ WH lep Hpp ŏ Ħ ttΗp

$H \rightarrow \gamma \gamma$ differential and fiducial

- Fiducial cross section 67±6 fb (64±4 fb) in agreement with SM
- **Differential distributions** also in agreement with SM
 - probe κ_c and κ_b and SMEFT Wilson coefficients

$H \rightarrow ZZ^* \rightarrow 4ISTXS$

- Clean final state with low event yield
 - DNN (ATLAS) or matrix element (CMS) to define **STXS** categories

tXX, VVV

Z+jets, tt **W** Uncertainty

Eur. Phys. J. C 80 (2020) 957

Data

VBF

ggF+bbH ZZ*

GeV

120

Events/2 (

80

60

40

20

ATLAS

 $H \rightarrow ZZ^* \rightarrow 4I$

 $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$

160

$H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4I$ differential and fiducial

- Combination of inclusive cross sections with full Run 2
- Combined differential cross section pT(H), y(H), N(jets), pT(jet1)
- Combined interpretation to probe κ_c and κ_b using pT(H)

12

JG U

$H \rightarrow \tau \tau STXS$

- Sensitivity for ggF with high pT(H) >300 GeV and VBF with high m(jj) >700 GeV
- Also differential measurement available

$\sigma_{ m i} imes B_{ m tr}^{ m H}$ [fb] p_{.SM} = 95 % 10 Ratio to SM N(jets): ≥ 1 1 ≥ 2 ≥ 0 $p_{T}(H)$ [GeV]: [60, 120] [120, 200] [200, 300] [300, ∞ [[0, 200] m_{jj} [GeV]: [0, 350][▲]

Higgs couplings combination

 Combination of cross section measurements in various production (ggF, VBF, VH, ttH+tH) and decay modes $(\gamma\gamma, bb, ZZ, WW, \tau\tau, \mu\mu)$

 Total signal strength **ATLAS** µ=1.06±0.06 (0.03 stat. 0.03 exp. 0.04 th.) **CMS** μ =1.02^{+0.07}-0.06 (0.04 stat. 0.04 exp. 0.04 th.)

 $\sigma \times B$ normalised to SM

Syst. + 0.07 + 0.12 + 0.23 + 0.49 - 0.38 + 0.17 - 0.14 +0.11+0.15- 0.12 -0.15+ 0.20 - 0.23 + 0.10 - 0.16 +0.33-0.29+ 0.20 + 0.17 - 0.14 + 0.08 - 0.06 + 0.48 + 0.37 - 0.27

8

JG U

- - fermion,...

— ±2σ

-5

Anomalous couplings and coupling structure

$H \rightarrow 4I$ anomalous couplings

- Clean selection ideal for probing **anomalous couplings**
- SMEFT with CP odd Wilson coefficients
 - fit coupling in certain STXS bins, parameterise as function of c_i
 - 2D limits on coefficients

Anomalous coupling using $H \rightarrow \tau \tau$ final state

• Sensitivity to anomalous HVV (mainly gg,WW, ZZ, Zγ) and Hff couplings

$$\mathcal{A}(\text{HVV}) \sim \left[a_{1}^{\text{VV}} + \frac{\kappa_{1}^{\text{VV}}q_{1}^{2} + \kappa_{2}^{\text{VV}}q_{2}^{2}}{\left(\Lambda_{1}^{\text{VV}}\right)^{2}}\right] m_{\text{V1}}^{2} \epsilon_{\text{V1}}^{*} \epsilon_{\text{V2}}^{*} + a_{2}^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_{3}^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu} - \mathcal{A}(\text{Hff}) = -\frac{m_{f}}{v} \bar{\psi}_{f} \left(\kappa_{f} + i\tilde{\kappa}_{f} \gamma_{5}\right) \psi_{f}$$

- Using correlation of quark jets and leptons (VBF, VH)
- Correlation of two jets in QCD production (ggF)
- Correlation of quark jets in ttH or tH
- Correlation of the decay products of τ s

Anomalous coupling using $H \rightarrow \tau \tau$

- **Improved** by adding (VBF, VH, $ggF \rightarrow$) $H \rightarrow 4I$ and ttH, $tH \rightarrow \gamma\gamma$, 4l channels
 - $H \rightarrow \tau \tau$ provides larger sample of ggF and VBF events
 - ggH improved by ttH events assuming top quark dominated
- Limits also on corresponding EFT couplings ggF in the Higgs basis

$$f_{\mathrm{CP}}^{\mathrm{Hff}} = rac{|\widetilde{\kappa}_{\mathrm{f}}|^2}{|\kappa_{\mathrm{f}}|^2 + |\widetilde{\kappa}_{\mathrm{f}}|^2} \operatorname{sgn}$$

CMS-PAS-HIG-20-0

JGU

$H\tau$ CP coupling in H→ττ

- Measure CP odd/even mixing in $H \rightarrow \tau \tau$ decay
- use decay modes with at least one had. τ
 - decays to π[±] or π⁰
 (via ρ[±] or a[±])
 - construct decay planes of τ-decay
 products and calculate CP sensitive angle φ_{CP}

$H\tau CP$ coupling in $H \rightarrow \tau\tau$

- Most sensitive final state (μ/e) ρ , $\rho\rho$, $\pi\rho$ for φ_{CP}
- Excluded pseudo scalar hypothesis $|\alpha^{H\tau\tau}|=90^{\circ}$ at 3.0 σ with limit $|\alpha^{H\tau\tau}|<41^{\circ}$
- **2D limit** on CP-even κ_{τ} CP-odd $\sim \kappa_{\tau} \tau$ -Yukawa coupling

Properties Higgs mass and width

Higgs mass

- Mass measurement only in $H \rightarrow \gamma \gamma$ and $H \rightarrow 4I$ with excellent exp. precision

dominated by stat. (Run 1+ part. Run 2) and exp. systematics: 140 MeV~0.1%

Higgs width

- **Direct** SM width measurement (Γ =4.1MeV) experimentally challenging
- Higgs width from ratio between on-shell and off-shell cross section in VV (4I, 2I2v) invariant mass spectrum (assume same signal strength)
- Limit on width Γ <14.4 MeV (ATLAS 36fb⁻¹) **Γ<3.2**^{+2.4}-1.7 MeV (CMS)
- First evidence for off-shell H production @ 3.6 **σ**
- Also interpretation of anomalous coupling

$H \rightarrow invisible$

- compare with width
 - ATLAS: VBF+MET and ttH+MET **BR(H→inv)<0.11 (0.11)**
 - CMS: VBF-like (high m(jj)) + MET **BR(H→inv)<0.17 (0.11)**

ATLAS-CONF-2020-052

Direct searches for invisible decay modes instead of summing decay widths and

CMS-HIG-20-003

JGU

Summary

- With full LHC Run 2 dataset ATLAS and CMS measured cross section in various final states
 - access to major production channels, also ttH+tH
 - access to **rarer decay modes** $cc \rightarrow \mu\mu \rightarrow Z\gamma \rightarrow quarkonia$ (see earlier talk)
- Probing coupling strength and structure in production and decay
 - STXS framework allows combination and re-interpretation of results in different models
 - working towards more **differential measurements**
 - Updated combination expected
- While mass precisely measured already, going for (indirect) SM width measurement
- Still more full Run2 results to come while LHC is restarting spring 2022 with CME=13.6GeV and total (Run 1-3) L=350-450fb⁻¹

JGU

Backup

Cross section STXS measurement

- Approach between inclusive and differential measurement
 - split Higgs production modes in gen-level bins in pT(H,V,Hjj,j), N(jets), m(jj) = STXS bin
 - acceptance in each bin only weakly depending on SM kinematics, proxy for true properties
- Advantages
 - minimize simultaneously experimental and theoretical uncertainties
 - allow re-interpretation of results in different models
 - isolation of possible BSM effects
- **Staging granularity** as statistics progresses
 - merging bins for less sensitive regions

$H \rightarrow \tau \tau$ differential and fiducial

- Fiducial cross section also in agreement with SM

Differential distributions N(jet), pT(H) and pT(j1), in agreement with SM (pT(H) >120 GeV)

JGU

H→bb

- bb, VH bb merged + boosted (pT(V) > 250GeV)

• Has been **challenging channel**, search in various production modes VBF bb, VBF bbγ, ttH

Measurements in VH channel start to separate W and Z and become systematically limited

$H \rightarrow Z\gamma$

- Interactions HWW, HZZ, Hyy and HZy are related in SU(2)_L
- Mass reconstructed in di-lepton final state with additional photon
- Measured signal strength µ and **branching ratio** to $H \rightarrow \gamma \gamma$ in agreement with SM
- Similar expected significance (1.2 σ)
- μ =2.0±0.9 @ 2.2 σ ATLAS μ =2.4±0.9 @ 2.7 σ CMS

$H \rightarrow \mu \mu$

- background (S/B ~0.1%)

H-quarkonia

- Rare SM decays to **light-quark resonances**: Z J/ ψ , J/ ψ J/ ψ , YY
- BR~10⁻⁶, possibly larger with new physics (in loops)
- Leptonic final states: BR<826 SM and BR<5.8 SM

CMS-HIG-20-008

ATLAS combination input

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]	Ref.	Used in combined measurement
$H \rightarrow \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139	[10]	Everywhere
$H \rightarrow ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139	[11]	Everywhere
	$t\bar{t}H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \rightarrow WW^*$	ggF, VBF	139	[12]	Everywhere
	$t\bar{t}H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \rightarrow \tau \tau$	ggF, VBF, WH, ZH, $t\bar{t}H(\tau_{had}\tau_{had})$	139	[13]	Everywhere
	$t\bar{t}H$	36.1	[19]	Everywhere but STXS and SMEFT
$H \rightarrow b \bar{b}$	WH, ZH	139	[14–16]	Everywhere
	VBF	126	[17]	Everywhere
	$t\bar{t}H$	139	[<mark>18</mark>]	Everywhere
$H \rightarrow \mu \mu$	ggF, VBF, VH , $t\bar{t}H$	139	[20]	Everywhere but STXS and SMEFT
$H \rightarrow Z\gamma$	ggF, VBF, VH , $t\bar{t}H$	139	[21]	Everywhere but STXS and SMEFT
$H \rightarrow inv$	VBF	139	[22]	Sec. 6.3 & 6.5

