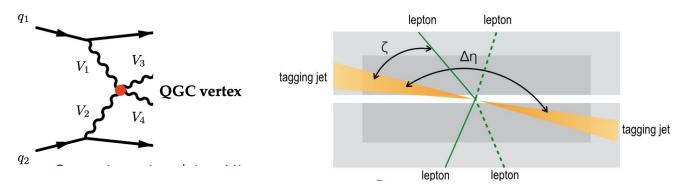
Electroweak Physics at ATLAS and CMS

(Multi-boson production)

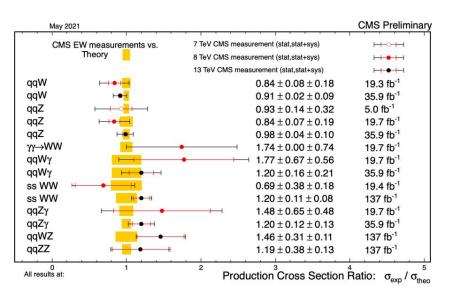
YuChul YANG (Kyungpook National University)
On behalf of CMS and ATLAS collaborations

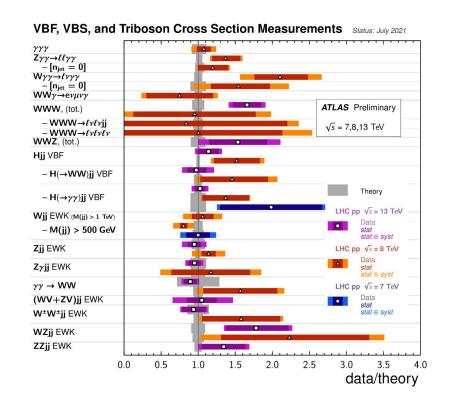
La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste, 2022 March 06-12


Introduction

Measurement of MultiBoson productions

- Probing the non-Abelian gauge structure of the EW interactions
- Precision tests of the Standard Model
- Search for the Beyond SM using Effective Field Theory framework


Vector boson scattering (VBS) at the LHC


- is scattering between two vector bosons radiated from incoming partons
- Key process to investigate electroweak symmetry breaking
- \circ Two energetic jets with large di-jet mass(m_{jj}) and rapidity separation($\Delta \eta_{jj}$)
- Centrality of the diboson system with respect to the two forward jets

VBS Diboson and Tri-boson production at CMS and ATLAS

Multi-boson production cross section ratio of data and theory

Today's talks....

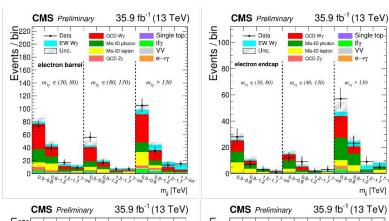
```
[CMS] VBS W(\rightarrowIv)\gamma + 2jets

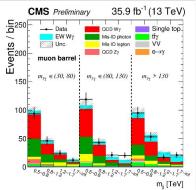
[CMS] VBS Z(\rightarrowII)\gamma + 2jets

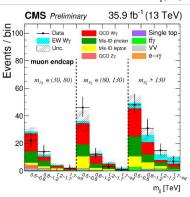
[ATLAS] VBS Z(\rightarrowVI)\gamma + 2jets

[ATLAS] VBS Z(\rightarrowVV)\gamma + 2jets

[ATLAS] VBS \gamma\gamma \rightarrow WW


[CMS] VBS W<sup>+</sup>W<sup>-</sup> + 2jets


[CMS] VBS W(Iv)V(qq) + 2Jets
```


[ATLAS] WW + ≥ 1jet [ATLAS] WWW production

[CMS] VBS Wy + 2jets

- 1 lepton + photon + 2jets final states
- m_{jj} and $m_{l\gamma}$ are used to extract EW signal in 4 categories

(2(e or μ) x 2(barrel or endcap photon)

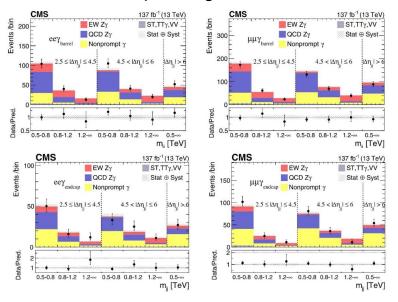
Main backgrounds:

- QCD Wγ : estimated from MC, constrained by simultaneous fit to data
- Non-prompt photon: estimated using photon shower shape using data driven method
- Non-prompt lepton : data-driven method used

Signal Region:

 \circ m_{ij} > 500 GeV, $|\Delta \eta_{ij}|$ > 2.5

Results (36fb⁻¹@13TeV):

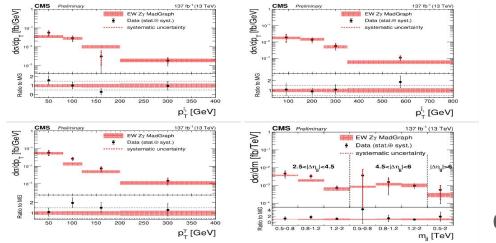

- Observed(expected) significance : 5.3σ (4.8σ) combing with Run I data (20fb⁻¹@8TeV)
- EW cross section : 20.4 ± 4.5 fb
- EW+QCD cross section : 108 ± 16 fb

[CMS] VBS Zy + 2jets

- 2 leptons(ee, μμ, 70 < m_{||} < 110 GeV) + photon + 2jets using full Run2 data
- $m_{ii} > 500$ GeV, $|\Delta \eta_{ii}| > 2.5$ for EWK fiducial volume

Main backgrounds:

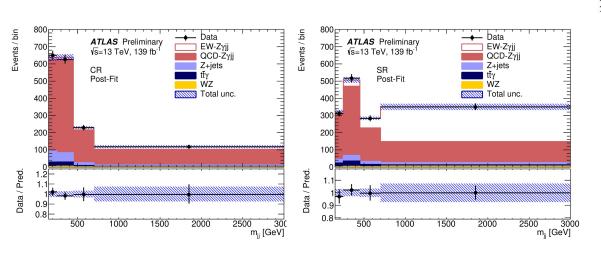
- QCD Zγ : estimated from MC, constrained by simultaneous fit to data
- Non-prompt photon: estimated using photon shower shape using data driven method

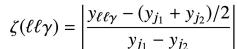


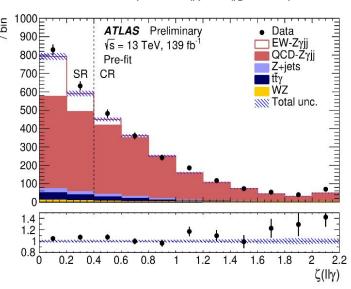
Results:

- Observed/expected significance : > 5σ
- EW cross section: 5.21 ± 0.76 fb
- EW+QCD cross section: 14.7 ± 1.53 fb

Differential cross section


✓ Good agreements between data and prediction



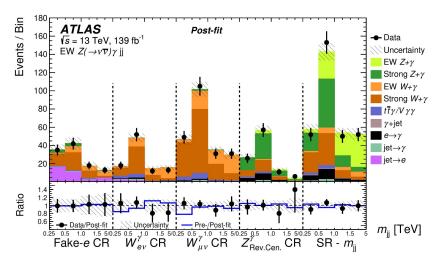

ATLAS-CONF-2021-038

[ATLAS] VBS Zy + 2jets

- 2leptons + photon + 2jets
- Major Bkgs. : QCD Zγ + jets and fake-photon
- SR and CR separation using Centrality (SR < 0.4 < CR)
- simultaneous fit in SR and CR on m_{jj}

Cross sections (10σ significance)

$$\sigma_{EW} = 4.49 \pm 0.40 \text{ (stat.)} \pm 0.42 \text{ (syst.) fb}$$


$$\sigma_{FW}^{pred} = 4.73 \pm 0.01 \text{ (stat.)} \pm 0.15 \text{ (PDF)}_{-0.22}^{+0.23} \text{ (scale) fb.}$$

$$\sigma_{EW+QCD} = 20.6 \pm 0.6 \text{ (stat.)}_{-1.0}^{+1.2} \text{ (syst.) fb,}$$

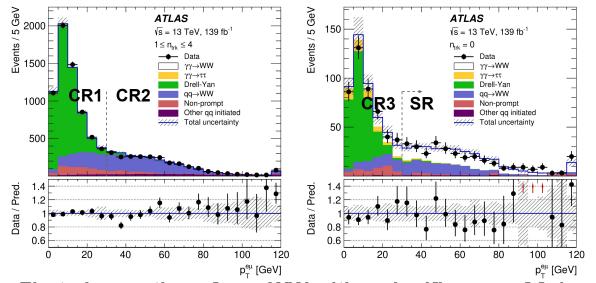
$$\sigma^{pred}_{EW+QCD} = 20.4 \pm 0.1 \text{ (stat.)} \pm 0.2 \text{ (PDF)}^{+2.6}_{-2.0} \text{ (scale) fb.}$$

[ATLAS] VBS Z(→*vv*)y + 2jets

- Z boson decaying to neutrinos(MET > 150 GeV)
- Major Bkgs. : QCD Zγ + jets, Wγ + jets(lost lepton) and fake-photon

- Maximum-likelihood fit used to extract strength
- in SR and CRs

$\mu_{Z\gamma_{ m EW}}$	$eta_{Z\gamma_{ m strong}}$	$ig eta_{W\gamma}$
1.03 ± 0.25	1.02 ± 0.41	1.01 ± 0.20


Fiducial Volume

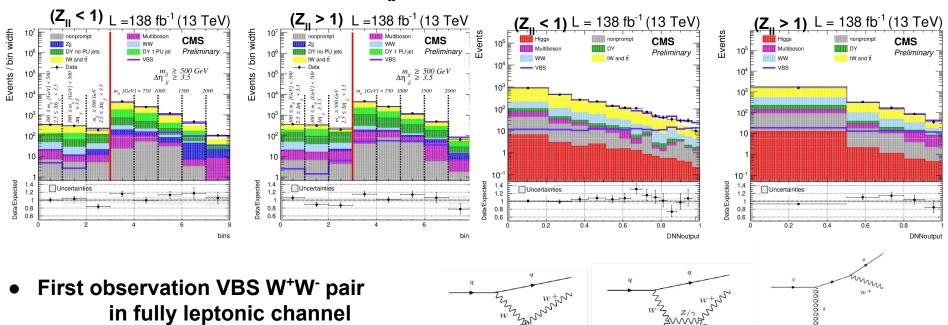
Observable	Requirements
$N_{\rm jet}$ with $p_{\rm T} > 25$ GeV	≥ 2
$ \eta(j_{1,2}) $	< 4.5
$p_{\mathrm{T}}(j_1)$ [GeV]	> 60
$p_{\mathrm{T}}(j_2)$ [GeV]	> 50
$\Delta R(j,\ell)$	> 0.4
$ \Delta\eta_{ m jj} $	> 3.0
C_3	< 0.7
$m_{\rm jj}$ [TeV]	> 0.5
truth- $E_{\rm T}^{\rm miss}$ [GeV]	> 150
$\Delta \phi (\text{truth-}\vec{E}_{\mathrm{T}}^{\text{miss}}, j_i)$	> 1.0
$p_{\rm T}(\gamma)$ [GeV]	> 15, < 110
$ \eta(\gamma) $	< 2.37
$E_{\rm T}^{\rm cone20}/E_{\rm T}^{\gamma}$	< 0.07
$\Delta R(\gamma, \text{jet-or-}\ell)$	> 0.4
C_{γ}	> 0.4
$\Delta \phi (\text{truth-}\vec{E}_{\mathrm{T}}^{\text{miss}}, \gamma)$	> 1.8
N_ℓ with $p_T > 4$ GeV and $ \eta < 2.47$	0

- EW Z(→νν)γjj process observed with a significance 5.2σ (expected 5.1σ)
- Measured fiducial cross section: 1.31 ± 0.29 fb
- Upper limits are set on branching ratio of Higgs to invisible particles and (H $ightarrow \gamma \gamma_{
 m dark}$)

[ATLAS] VBS yy→WW

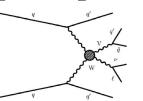
- Signal process can be proceed via only EWK boson couplings at LO
 - o ideal probe for anomalous couplings
- $e^{\pm}\mu^{\mp}$ channel : opposite-sign and different flavour dilepton
- Major Bkgs. : inclusive WW and non-prompt lepton from W + jets
- Simultaneous profile likelihood fit performed in signal and 3 control regions(n_{trk} , $p_T(e\mu)$)

Number of reconstructed tracks, n


• First observation of $\gamma\gamma$ WW with a significance of 8.4 σ

• Measured cross section : $\sigma_{\text{mead}} = 3.13 \pm 0.31 \text{(stat.)} \pm 0.28 \text{(syst.)} \text{ fb}$

[CMS] VBS W[±]W[±] + 2jets


Observed Significance : $5.6\sigma(5.2\sigma \text{ exp})$ Measured cross section : $10.2 \pm 2.0 \text{ fb}$

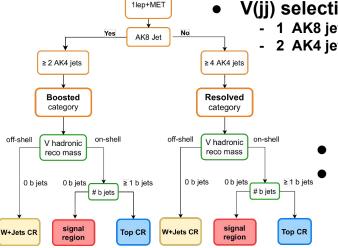
- Measurement of EWK production of a pair of opposite-sign W bosons
- Major backgrounds: top, QCD-induced WW, and DY+jets (control regions)
- Discriminating variables : used m_{jj} bins(ee, $\mu\mu$) and DNN(e μ)

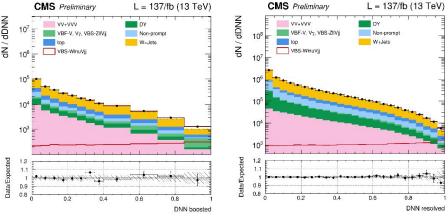
10

[CMS] VBS W(Iv)V(jj) + 2Jets

- W is leptonic decay, V is hadronic decay
- Larger XS than fully leptonic, but larger bkgs from W+jets and ttbar

DNN for signal extraction


1 lepton + MET Analysis workflow •


2 VBS tagged jets

V(jj) selections

- 1 AK8 jet p_⊤ > 200GeV

- 2 AK4 jet p_T > 30 GeV

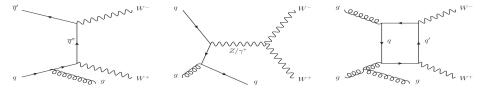
✓ Good agreement (data vs. pred.)

- First evidence(4.4 σ (obs), 5.1 σ (exp)) for VBS WV in semi-leptonic
- Signal strength:

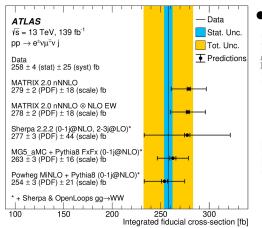
$$\mu_{EW} = \sigma^{\rm obs}/\sigma^{\rm SM} = 0.85^{+0.24}_{-0.20} = 0.85^{+0.21}_{-0.17}({\rm syst}) \, ^{+0.12}_{-0.12}({\rm stat}),$$

$$\mu_{EW+QCD} = \sigma^{\rm obs}/\sigma^{\rm SM} = 0.98^{+0.20}_{-0.17} = 0.98^{+0.19}_{-0.16}({\rm syst}) \, ^{+0.07}_{-0.07}({\rm stat}),$$

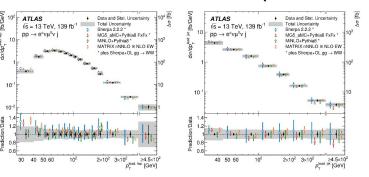
[ATLAS] WW + ≥ 1jet


Measurement of fiducial and differential cross sections

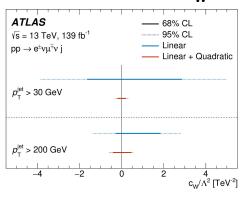
- stringent test of theoretical predictions
- hard jet requirement : improving sensitivity for aTGC with enhance interference(SM+aTGC)


(Ref: A. Azatov et al., JHEP 10 (2017) 027)

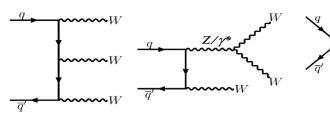
Event Selections


- o eμ pair, m_{eu} > 85 GeV
- b-jet(>20GeV) veto
- ≥ 1jet(35 GeV)

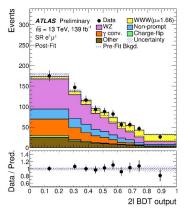
Fiducial cross section

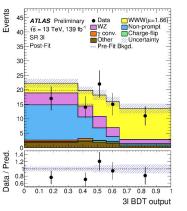

Differential cross sections (12 variables)

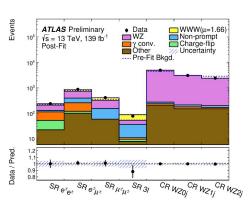
Excellent agreement with predictions

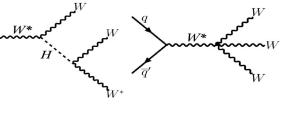

EFT(dim-6) interpretation

- \circ using $m_{e\mu}$ dist.
- set the limit on c_w




[ATLAS] WWW observation (1)


WWW production


- I[±]vI[±]vjj(2I; same charge) and I[±]v I[±]vI[‡]v (3I) channels
- Major backgrounds : WZ + jets
- BDT train is performed
- Simultaneous maximum-likelihood fit of BDT score in signal(2l, 3l) and control regions

ATLAS-CONF-2021-039 arXiv:2201.13045

BDT variables (ordered by importance)

·	<u> </u>
2ℓ	3ℓ
$\overline{ m_{jj}-m_W }$	$E_{\rm T}^{\rm miss}$ significance $\times 10/E_{\rm T}^{\rm miss}$
p_{T} (forward jet)	$p_T(\ell_2)$
$E_{\rm T}^{\rm miss}$ significance	$N({ m jets})$
$p_T(j_2)$	same flavor $m_{\ell\ell}$
minimum $m(\ell, j)$	$m_T(\ell\ell\ell, E_{ m T}^{ m miss})$
$m(\ell_2,j_1)$	$m(\ell_2,\ell_3)$
$N({ m jets})$	$\Delta\phi(\ell\ell\ell,E_{\mathrm{T}}^{\mathrm{miss}})$
$p_{\mathrm{T}}~(\ell_2)$	minimum $\Delta R(\ell,\ell)$
$m_{\ell\ell}$	$p_{\mathrm{T}}\left(\ell_{3} ight)$
$ \eta(\ell_1) $	$m_T(\ell_2, E_{\mathrm{T}}^{\mathrm{miss}})$
N(leptons in jets)	$E_{\rm T}^{\rm miss}$ significance
$m(\ell_1, j_1)$	

[ATLAS] WWW observation (2)

Number of Events

	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$	3ℓ
WWW signal	28.4 ± 4.3	124 ± 19	82 ± 12	34.8 ± 5.2
WZ	81.1 ± 5.7	346 ± 22	170 ± 10	16.4 ± 1.5
Charge-flip	31.1 ± 7.3	19 ± 5	-	1.7 ± 0.4
γ conversions	60.8 ± 8.5	139 ± 15	-	1.5 ± 0.1
Non-prompt	17.0 ± 4.0	145 ± 23	104 ± 21	26.6 ± 2.9
Other	22.3 ± 2.4	100 ± 10	58 ± 6	8.0 ± 0.9
Total predicted	241 ± 11	873 ± 22	415 ± 17	89.0 ± 5.4
Data	242	885	418	79

Observed(expected) significances

Fit	$\mu(WWW)$	Significance observed (expected)
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	1.54 ± 0.76	$2.2 (1.4) \sigma$
$e^{\pm}\mu^{\pm}$	1.44 ± 0.39	$4.1 (3.0) \sigma$
$\mu^{\pm}\mu^{\pm}$	2.23 ± 0.46	$5.6~(2.7)~\sigma$
2ℓ	1.75 ± 0.30	$6.6 (4.0) \sigma$
3ℓ	1.32 ± 0.37	$4.8 (3.8) \sigma$
Combined	1.61 ± 0.25	$8.0~(5.4)~\sigma$

ATLAS-CONF-2021-039 arXiv:2201.13045

<u> </u>	
Uncertainty source	$\Delta \sigma / \sigma \ [\%]$
Data-driven background	6.0
Prompt-lepton-background modeling	3.0
Jets and $E_{\mathrm{T}}^{\mathrm{miss}}$	2.6
MC statistics	2.5
Lepton	2.2
Luminosity	1.9
Signal modeling	1.5
Pile-up modeling	1.0
Total systematic uncertainty	9.9
Data statistics	11.6
WZ normalizations	3.1
Total statistical uncertainty	12.0

• Cross sections:

- \circ $\sigma(obs) = 820 \pm 100(stat) \pm 80(syst) fb$
 - σ (prd) = 511 ± 18 fb(NLO QCD and LO EW)
- The first observation of WWW at LHC

Summary

- CMS and ATLAS have performed comprehensive studies of the multiboson production
 Observed significance of VBS diboson productions using 13 TeV data
- W[±]W[±] W±W[∓] WZ ZZ Wy Zγ Z(vv)y**yy** →**WW** WV 6.5 5.3 5.5 10 5.2 8.4 **ATLAS CMS** > 5 6.8 4.0 5.3 9.4 4.4 5.6
 - Precision measurement of WW + ≥ 1 jet performed using Run2 full dataset
 - First observation of WWW production at LHC performed by ATLAS
 - The results is in agreement with the SM predictions and serve as input EFT interpretations (set the limits on anomalous gauge couplings parameters)
 - ATLAS: global EFT fit of dim6 operators in ATL-PHYS-PUB-2021-022
 - CMS: <u>Limits on aTGC and aQGC</u>
 - Run3 and HL-LHC are coming,
 it is expected that it will give us more interesting results with more data