

Top quark precision measurements at the LHC

Rohin Narayan Southern Methodist University, Dallas

La Thuile 2022 - Les Rencontres de Physique de la Vallée d'Aoste

For ATLAS & CMS Collaborations

10-March-2022

Introduction

Pair production

- The top quark is the most massive fundamental particle lacksquare
 - Coupling to Higgs field is ~1
 - Does not hadronize: Decays before hadronization time scale. ullet
- Probe for testing Standard Model and BSM Physics
 - Test pQCD predictions at NNLO precision, Constrain PDF's
 - Precision SM measurements (top mass, $|V_{tb}|$) ●

Rare processes

Single top production

$t\bar{t}$ pair production

- Presence of 2 neutrinos: Kinematically underconstrained system.
- Background: *Wt*, di-boson, $Z \rightarrow \tau^+ \tau^-$

- Probe boosted top quark topologies
- Background: Dominated by QCD multijet

- High statistics
- Backgrounds: W+jets, Multi-jet
- Multiple control regions

Differential $t\bar{t}$ measurement with boosted tops: l + jets

- The topology consists of a hadronically decaying boosted top quark and a leptonically decaying top $(t\bar{t} \rightarrow WbWb \rightarrow \ell \nu bqq'b)$
- Leading backgrounds (tW, W + jets, $t\bar{t}X$ etc.) are estimated from simulated samples. \bullet
- The impact of **Jet energy scale** uncertainties are reduced using a dedicated Jet energy scale factor method (JSF)

- quark
 - of small-R jet
- JSF calculated as a correction for small-R jet 172.5 GeV)
- Relationship between simulated $m^{t,h}$ and JSF is linear.
- JSF method reduces total systematic uncertainty by upto 30%.

Differential $t\bar{t}$ measurement with boosted tops : l + jets

- Observables characterizing top quark kinematics as well as those probing additional radiations in the events were probed.
- NNLO corrections relevant: lacksquarereweighted MC predictions show good agreement with data.
- Leading uncertainty related to top modeling.

 $| \sigma_{t\bar{t}} / d p_T^{t,h}$

Prediction Data

 10^{-2}

10

10⁻⁴

10-

500

Sensitivity of the analysis to New physics is probed in terms of dim-6 EFT operators.

• O_{tG} operator changes the overall rate of $t\bar{t}$ production, $O_{ta}^{(8)}$

results in additional $t\bar{t}$ events at high energy.

 \mathcal{P}_{T}^{had} distribution is chosen to disentangle both operators. p_T

Differential tt measurement with (resolved+boosted) tops: l + jets

- Combined analysis of categories with resolved and boosted signatures.
- boosted categories

PRD(104)092013 (2021)

Likelihood & NN based association of objects to hadronic top(t_{had}) and leptonic top(t_l) in various resolved and

PRD(104)092013 (2021)

Differential $t\bar{t}$ measurement with boosted tops: all hadronic

- Observed through the hadronic decay of top quarks, via reconstruction of large-R jets.
 - Jet substructure observables used in a DNN based top-tagging algorithm.
 - Leading top quark jet p_T^{t1} > 500 GeV and subleading top quark jet p_T^{t2} > 350 GeV.
- QCD multijet process is a major background. Estimated through a data-driven procedure ("ABCD") method.
 - Other backgrounds derived from simulations.

	Signal	Validation	Control			
jet	1t1b	J (7.0%)	K (25%)	L (39%)		
l large-R	Ot1b	B (1.2%)	D (5.0%)	H (9.0%)	N (
	1t0b	E (0.5%)	F (2.3%)	G (4.9%)	M (
	0t0b	A (0.09%)	C (0.5%)	I (1.1%)	0 (9	
2nc		0t0b	1t0b	0t1b	1	
	Leading large-R jet					

 $S = \frac{J \times O}{A} \cdot \frac{D \times A}{B \times C} \cdot \frac{G \times A}{E \times I} \cdot \frac{F \times A}{E \times C} \cdot \frac{H \times A}{B \times I}$

ATLAS-CONF-2021-050

Differential *tt* measurement with boosted tops: all hadronic

- Several single, double and triple differential cross-section measurements were performed.
 - Both at particle level as well as parton level \bullet

Inclusive $t\bar{t}$ measurement at $\sqrt{s} = 5.02$ TeV

- Based on 302 pb^{-1} data collected in a special low-intensity low-energy LHC run.
- Events with opposite sign $e\mu$ pairs are selected for the analysis.

Leading systematic uncertainties are related to lepton efficiencies and trigger efficiencies.

ttj Energy asymmetry: EFT interpretation

- Charge asymmetry can be measured as rapidity asymmetry as well as energy asymmetry in the $t\bar{t}j$ the system.
 - Complementary phase space.
- The energy asymmetry is sensitive to the chiral and color structure of four-quark operators.

 $\sigma^{\text{opt}}(\theta_i) = \sigma(\theta_i | y_{t\bar{t}i} > 0) + \sigma(\pi - \theta_i | y_{t\bar{t}i} < 0),$

• $\Delta E = E_t - E_{\overline{t}}$

 $A_E(\theta_j) \equiv \frac{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) - \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) + \sigma^{\text{opt}}(\theta_j | \Delta E < 0)},$

ttj Energy asymmetry: EFT interpretation

- The measured asymmetry in all θ_i bins are consistent with NLO QCD predictions.
 - SMEFT interpretation probes new directions in the dim-6 parameter space.
 - The analysis is limited by available data statistics and $t\bar{t}$ FSR modelling.

arxiv-2110.05453

Single top production

Single top: t-Channel, Polarization

Production

- Top quark in t-channel single top production is polarized.
- Polarization vector is extracted as a function of $cos\theta_{\ell i}$ •
 - Analysis based on angular distribution of charge • lepton. ($t \rightarrow bW(\ell \nu)$)

arxiv-2202.11382 W^+ W^+

Unfolded direction cosines

Single top: t-Channel, Polarization

- Best fit polarization measurement values.
- Top quarks
 - $P_{x'} = 0.01 \pm 0.18$

•
$$P_{y'} = -0.029 \pm 0.027$$

• $P_{z'} = 0.91 \pm 0.10$

• Top Anti quarks

$$P_{x'} = -0.2 \pm 0.20$$

$$P_{y'} = -\ 0.007 \pm 0.051$$
 o

$$P_{z'} = -0.79 \pm 0.16$$

 Leading uncertainties: JER followed by JES and signal –1 modelling.

- EFT interpretation
- Angular measurement used to derive bounds on the complex Wilson coefficients of dim-6 operator \mathcal{O}_{tW}

Single top: *tW* production

- Sensitive to the CKM matrix element $|V_{th}|$
- Interference with $t\bar{t}$ production at NLO
 - Diagram removal scheme adopted for signal modeling
- BDT is trained to separate $\frac{1}{2}$ tW from $t\overline{t}$ background.
- Leading backgrounds: W+jets, QCD multijets & $t\overline{t}$ process
 - W+jets template from simulation and normalization derived from fit to data
 - QCD multijet, both template and normalization derived from data.

Cross-section extracted via binned likelihood fit on the BDT discriminant for e, μ channel across jet-multiplicity bins simultaneously.

Observed cross-section: $89 \pm 4(stat) \pm 12(syst)$ pb (consistent with SM prediction)

Leading systematics: Jet energy scale, b-tagging efficiency, luminosity

tZq: Differential and inclusive measurement

 \bullet measurement possible

 \bullet

- 5FS predicts larger cross-section wrt 4FS. However the calculations are compatible within uncertainties.
- Inclusive measurement from ATLAS: J. High Energ. Phys. 2020, <u>124 (2020)</u>

Systematics are dominated by signal and $t\bar{t}Z$ scale variations.

Only small QCD corrections. Precise tZ coupling

Study of $t\bar{t}/tW$ interference using $pp \rightarrow bbl\nu l'\nu'$ simulation

- between these processes

Some kinematic distributions show similarity between different schemes, while some others don't.

Study of $t\bar{t}/tW$ interference using $pp \rightarrow bbl\nu l'\nu'$ simulation

- The impact of " $bb4\ell$ " is assessed with a template fit of the top mass
- A difference of 0.36 ± 0.08 GeV is observed
 - Similar size as the total signal ulletmodelling uncertainty in the current ATLAS measurement (ATL-PHYS-PUB-2021-015)

150

250

200

- DR2 scheme deviates from the observed data and can be excluded
- Dynamic scale choice of DR1 scheme improves its agreement with data.

"PDF" and "flux" parameters are only relevant for DS2 scheme.

Top quark mass interpretation in ATLAS MC

- Direct top-quark mass measurement analyses uses MC templates with varying m_t^{MC}
- Differences between m_t^{pole} and m_t^{MC} can be larger than current precision on top quark mass measurements.
- NLL templates with varying parameters are fitted to the MC jet Mass distribution in order to extract the best fit $m_{\star}^{(MSR)}$ \bullet
 - Method described in <u>arxiv-1608.01318</u> & <u>arxiv-1708.02586</u> \bullet

 $m_t^{\text{MC}} = m_t^{\text{MSR}} (1 \text{ GeV}) + 80_{-410}^{+350} \text{ MeV}$

Uncertainties

Source	Size [MeV]	Comment
Theory (higher-order corrections)	+230/-310	Envelope of NLL scale var
Fit methodology	±190	Choice of fit range, $p_{\rm T}$ bins
Underlying Event model	±155	A14 eigentune variations, C
Total Systematic	+340/-340	
Statistical Uncertainty	±100	
Total Uncertainty	+350/-410	

Conclusion

- - ATLAS + CMS performed many precision measurements.
- Recent measurements agree with the Standard Model quite well. •
 - More precise and differential measurements. •
 - Many EFT interpretations and constraints on Wilson coefficients.
- Understanding of detector and physics modeling. •
 - Largest experimental uncertainty from JES, JER and b-tagging.
 - Theory uncertainty limited by modeling of parton shower and hadronization. \bullet
- Monte Carlo studies for future precision measurements.
 - Potential improvements in top quark mass measurement as well as other observables.

With LHC delivering millions of top quark events, top physics is in the precision measurement era.

Backup

$t\bar{t}$ allhadronic measurements: EFT

$$\sigma(C_i) \sim |M|^2 = \sigma_{SM} + \sigma_{SM-EFT}$$
$$= \sigma_{SM} + \frac{1}{\Lambda^2} \sum_i \alpha_i$$

tt allhadronic EFT intepretation

2D limits on various EFT coefficients in allhadronic measurement.

Source	Relative Uncertainty [%]
Top-tagging	±7.8
JES ⊕ JER	± 4.2
$JMS \oplus JMR$	±1.1
Flavor tagging	± 2.9
Alternative hard-scattering model	± 0.9
Alternative parton-shower model	± 4.3
ISR/FSR + scale	± 4.9
PDF	± 0.8
Luminosity	±1.7
Monte Carlo sample statistics	±0.5
Systematics	±11.6
Statistics	± 1.0
Total Uncertainty	±11.7

tt allhadronic: Uncertanties

Source Top-tagging $JES \oplus JER$ JMS ⊕ JMR Flavor tagging Alternative hard-scattering model Alternative parton-shower model ISR/FSR + scale PDF Luminosity Monte Carlo sample statistics Systematics Statistics **Total Uncertainty**

Relative Uncertainty [%]		
±7.8		
±4.2		
±1.1		
±2.9		
±0.9		
±4.3		
±4.9		
±0.8		
±1.7		
±0.5		
±11.6		
±1.0		
±11.7		

tt **Differential: JSF-1**

tt **Differential: JSF-2**

Source	Uncertainty [%]	Uncertainty [%] (no JS]	
Statistical (data)	±0.4	±0.4	
JSF statistical (data)	±0.4		
Statistical (MC)	±0.2	±0.1	
Hard scatter	±0.5	±0.8	
Hadronisation	±2.0	±1.8	
Radiation (ISR/FSR + h_{damp})	+1.0 -1.6	+1.4 -2.3	
PDF	±0.1	±0.1	
Top-quark mass	+0.8 -1.1	±0.1	
Jets	±0.7	±4.2	
b-tagging	±2.4	±2.4	
Leptons	± 0.8	±0.8	
$E_{\mathrm{T}}^{\mathrm{miss}}$	±0.1	±0.1	
Pile-up	±0.4	±0.0	
Luminosity	±1.8	±1.8	
Background modelling	±0.6	±0.6	
Total systematic uncertainty	+4.1 -4.3	+5.8 -6.0	
Total	+4.1 -4.3	+5.8 -6.0	

F)

28

Single top: EFT interpretation

The solid line corresponds to the EFT prediction using the best-fit values for the Wilson coefficients \bullet $C_{tw} = 0.4$ and $C_{itW} = 0.3$

Single top production: Differential

Showing differential measurement of tW production in dileptonic channel \bullet

tZq: Differential and inclusive measurement

Absolute normalized differential distributions \bullet

CMS-PAS-TOP-20-010

bb41: More distributions.

