

W-mass and *Z*-production at LHCb

La Thuile 2022

Menglin Xu On behalf of the LHCb collaboration

 $\Lambda/AR\Lambda$

LHCb detector

- Single-arm forward spectrometer
 - > Designed for the heavy flavor physics with $2 < \eta < 5$
 - > Coverage is complementary to ATLAS and CMS
 - Extended to EW measurements: excellent performance of tracking and muon detector

JIST 3 (2008) S08005

Int. J. Mod. Phys. A 30. 1530022 (2015)

W and Z physics at LHCb

- LHCb has already delivered a strong program of physics with *W* and *Z* boson mainly probing QCD
- LHCb detector provides access to PDFs
 - > High Bjorken-x region
 - Low Bjorken-x region: has not been probed directly at electroweak energy scales before

m_W - Introduction

- Long term goal: close gap in precision between direct and indirect determinations of the m_W
- Global EW fit provides prediction with 7 MeV precision ~ almost half the uncertainty of the <u>PDG average</u> of direct measurement (12 MeV)
- Most precise measurements at LHC to data achieve 19 MeV precision

m_W - at LHCb

- High precision measurement of m_W is possible at LHCb, PDF systematic uncertainty can be reduced by a factor 2
- Sensitivity to the m_W by carefully measuring the muon p_T
- Simulation weighted in 5D

m_W - Uncertainties

Source [JHEP 01 (2022) 036]

Parton distribution functions Theory (excl. PDFs) total

Transverse momentum model

Angular coefficients

 $\ensuremath{\operatorname{QED}}\xspace$ FSR model

Additional electroweak corrections

Experimental total

Momentum scale and resolution modelling Muon ID, trigger and tracking efficiency Isolation efficiency QCD background

Statistical

Total

Size [MeV]

- 9→ Average of NNPDF31, CT18, MSHT20
 17
 11 → Envelope from five different models
- $10 \rightarrow$ Uncorrelated scale variation
- $\frac{7}{5} \rightarrow \frac{10}{5}$ Envelope of the QED FSR from Pythia8, Photos and Herweig7

Includes statistical uncertainties,

details of the methods (e.g. binning, smoothing)

6

4

2

23

32

m_W - Results

- LHCb achieves a precision of \sim 32 MeV using roughly 1/3 of the Run-II dataset
- An overall precision < 20 MeV is achievable with all existing LHCb data

 $m_W = 80354 \pm 23_{\text{stat.}} \pm 10_{\text{exp.}} \pm 17_{\text{theory}} \pm 9_{\text{PDF}} \text{ MeV}$

Z production cross-section - Strategy

- Datasets: 2016, 2017 and 2018 data: **5**. **1** ± **0**. **1** *fb*⁻¹
- Very high purity, $N_{bkg} / N_{sig} \sim 2\%$

$$\frac{d\sigma_{Z \to \mu^+ \mu^-}}{dy}(i) = \frac{N_Z(i) \cdot f_{FSR}^Z(i)}{\mathcal{L} \cdot \varepsilon_{REC}^Z(i) \cdot \Delta y(i)}$$

fiducial region

μ^{\pm}	di-muon	
$p_{\rm T} > 20 {\rm GeV}/c$		
$2 < \eta < 4.5$	$60 < M_{\mu^+\mu^-} < 120 { m GeV}/c^2$	

Z differential cross section: Z - y

- Reasonable agreement between data and predictions, $ratio(R) \sim 1$
- Fewz predictions systematically smaller than the measured results in the lower *y* region

8

Z differential cross section: Z- p_T and ϕ_{η}^*

- ϕ_{η}^* : the scattering angle of the muons with respect to the proton beam direction in the rest frame of the dimuon system
- Reasonable agreement between data and predictions
- Provide a stringent test on different QCD calculations

Z double differential cross-section

- The first double differential cross-section measurement in the forward region
- No significant deviations are seen between measurements and the theoretical predictions

[arXiv:2112.07458]

Z Integrated cross section

• The most precise measurement in the forward region @ 13TeV $\sigma(Z \rightarrow \mu^+\mu^-) = 195.3 \pm 0.23 \text{ (stat.)} \pm 1.5 \text{ (sys.)} \pm 3.9 \text{ (lumi.)} \text{ pb}$

Z angular coefficient measurement - Introduction

- The kinematic distribution of the final-state leptons provides a direct probe of the polarization of the intermediate gauge boson
- Differential cross section of lepton decay angle $(cos\theta, \phi)$ in Collins-Soper frame

Z angular coefficient measurement - p_T dependent results [arXiv:2203.01602]

- The first measurements of the angular coefficients of Drell-Yan $\mu^+\mu^$ pairs in the forward rapidity region of *pp* collisions at 13TeV
- Measurements are at Born level
- The uncertainty is dominated by statistical uncertainty

Z angular coefficient measurement - y dependent results [arXiv:2203.01602]

- Reasonable agreement between the measurements and ResBos calculations for A_0 to ΔA_4
- $A_0 A_2$: differences between measurements and predictions, especially in the highest y region
 - A y dependence in the QCD
 resummation or higher-order effects

Z angular coefficient measurement - Boer-Mulders TMD

- A_2 is sensitive to the Boer-Mulders transverse momentum dependent PDFs (TMD)
- The measured A_2 values deviates significantly from all predictions in the lowest p_T region for the low-mass region
- None of the predictions include nonperturbative spin-momentum correlations

Z boson produced in association with charm - Introduction

- Extrinsic charm content of the proton arises due to perturbative gluon radiation
- Proton may also have an intrinsic charm (IC) content bound to valance quarks
- Measure $\sigma(Z_c)/\sigma(Z_j)$
 - > IC would give significant enhancement over no-IC at high y(Z)
 - > IC-allowed model at high y(Z) is largely unconstrained
 - > Many jet-related systematics cancel in the ratio

Z boson produced in association with charm - Systematics

• Leading systematic uncertainty due to *c*-tagging calibration

[LHCb-DP-2021-006]

Source	Relative Uncertainty
c tagging	67%
DV-fit templates	3–4%
Jet reconstruction	1%
Jet $p_{\rm T}$ scale & resolution	1%
Total	8%

[arXiv:2109.08084]

fiducial region

Z bosons	$p_{\rm T}(\mu) > 20 {\rm GeV}, 2.0 < \eta(\mu) < 4.5, 60 < m(\mu^+\mu^-) < 120 {\rm GeV}$
Jets	$20 < p_{\rm T}(j) < 100 {\rm GeV}, 2.2 < \eta(j) < 4.2$
Charm jets	$p_{\rm T}(c \text{ hadron}) > 5 { m GeV}, \Delta R(j,c \text{ hadron}) < 0.5$
Events	$\Delta R(\mu,j) > 0.5$

2022/3/9

La Thuile 2022

17

Z boson produced in association with charm - Results

- Clear enhancement in highest y bin
- Inconsistent with NO-IC theory at $>3\sigma$
- More consistent with expected effect form $|uudc\bar{c}\rangle$ component predicted by LFQCD
- Current results are statistically limited, Run-III dataset will allow for finer binning

- PDF4LHC15: purely extrinsic
- NNPDF3.0 IC: allows global fit to include IC where not excluded by existing measurements, uncertainties reflect current experimental limits
- LFQCD: with fixed IC contribution, uncertainties reflect model assumptions

Summary

- The LHCb detector has proved its capability to do high-precision measurements of EW observables
- Probe perturbative QCD and EW theory in a novel region of phase space as functions of the Bjorken-*x* of the proton and energy scale of the interaction
- Provide important and unique information to the PDFs global fitting, especially in the large and small x region
- Last year, four promising analyses about m_W and Z production have been done at LHCb

Back Up

Statistical correlation matrix

- Determined using the simulation events
- Large correlations in low p_T^Z region, small correlations in the high p_T^Z region
- For y_Z and ϕ_η^* , the correlations between different bins are negligible

Systematic correlation matrix

- Systematic uncertainties from background, alignment, efficiency closure test, and FSR are considered to be uncorrelated
- Luminosity uncertainties are considered to be 100% correlated

La Thuile 2022

[arXiv:2112.07458]

Z boson produced in association with charm – Charm in proton

Extrinsic charm from gluon splitting

- Perturbative
- Short time scales

Intrinsic charm

- Bound to multiple valance quarks
- Longer time scales

Z boson produced in association with charm -Detector-response matrix for c-tagged jets

- The interval-to-interval migration probabilities
- Jets with true (reconstructed) *p_T(j)* is either <15 GeV/c or >100 GeV/c are included in the unfolding but not shown graphically