

B-physics Anomalies: from Data to New Physics Models

Claudia Cornella Johannes Gutenberg University Mainz

From Data to New Physics models

Here: $b \rightarrow sl^{+}l^{-} \& b \rightarrow clv$

Data

The B-physics anomalies

Gauge interactions are lepton-flavor universal. Lepton masses are the only source of non universality.

h
$$l_{don't think sol}$$

 $m_e \neq m_\mu \neq m_z$

$$\Rightarrow \qquad \Gamma_e = \Gamma_\mu = \Gamma_\tau$$
(up to kinematical effects)

Hints of LFU violation in semi-leptonic B decays:

•
$$\mu$$
 vs e universality in $b \rightarrow sll$

$$R_{K^{(*)}} = \frac{\mathscr{B}(B \to K^{(*)} \mu \mu)}{\mathscr{B}(B \to K^{(*)} e e)} < R_{K^{(*)}}^{\mathrm{SM}}$$

+ angular obs. and rates in
$$b \rightarrow s \mu \mu$$

 $\sim 4 \sigma$

▶ τ vs μ , e universality in $b \rightarrow c l \nu$

$$R_{D^{(*)}} = \frac{\mathscr{B}(B \to D^{(*)}\tau\bar{\nu})}{\mathscr{B}(B \to D^{(*)}\ell\bar{\nu})} > R_{D^{(*)}}^{\mathrm{SM}}$$

 $\sim 3 \sigma$

The $b \rightarrow sll$ anomalies [Vitalii & Luca's talks]

• discrepancy in $B \rightarrow K^* \mu \mu$ angular distribution

• deficit in
$$\mathscr{B}(B \to X_s \mu \mu) \ X_s = K, K^*, \phi$$

•
$$\mu/e$$
 LFUV in $B \to K^{(*)}ll$
• deficit in $\mathscr{B}(B_s \to \mu\mu)$

 $R_{K^{(*)}}^{[1.1,6] \text{ GeV}^2} = 1.00 \pm 0.01 \quad \text{[Bordone et al, 1605.07633]}$ $\mathscr{B}(B_s \to \mu\mu)_{\text{SM}} = (3.66 \pm 0.14) \times 10^{-9}$ [Beneke et al., 1908.07011]

LHCb results on LFU ratios this year:

 $R_{K}^{[1.1,6]}$ update (3.1 σ) [LHCb, 2103.11769] first results for $R_{K_{s}}$ and $R_{K^{*+}}$ [LHCb, 2110.09501]

Global significance for New Physics in $b \rightarrow sll \sim 4\sigma$ [Isidori, Lancierini, Owen, Serra, 2104.05631]

The $b \rightarrow c l \nu$ anomalies

- + $\sim 15\,\%$ enhancement due to excess in tau mode
- theoretically clean
- measurements by Babar, Belle, LHCb (so far R_{D^*} only) in good agreement
- 3.1 σ tension (combined)

Lower significance, need experimental clarification.

NP interpretation (I): Effective Theory

EFT for $b \rightarrow sll$ [see Luca's talk]

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \frac{\alpha}{4\pi} \sum_i C_i O_i$$

$$O_9^{\mu} = (\bar{s}_L \gamma_\mu b_L)(\bar{\mu} \gamma^\mu \mu)$$
$$O_{10}^{\mu} = (\bar{s}_L \gamma_\mu b_L)(\bar{\mu} \gamma^\mu \gamma_5 \mu)$$

- Lorentz structure
 - New Physics in C_9^{μ} only, or
 - Left-handed NP: $\Delta C_9^{\mu} = -\Delta C_{10}^{\mu}$ (+ universal shift ΔC_9^U)

• Size (scale)

$$\downarrow_{L}$$
 \downarrow_{L} \downarrow_{L} $\sim 4 \times 10^{-5} G_F \Rightarrow \frac{g_{NP}^2}{\Lambda^2} \sim \frac{1}{(40 \text{ TeV})^2}$ $\sim 40 \text{ TeV}$
 \downarrow_{H} few TeV
 $m_{W,t,H}$

EFT for
$$b \to c \tau \nu$$

$$\mathscr{L}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{cb} \sum_i C_i O_i$$
$$O_{II}^i = (\bar{u}_I^i \gamma_\mu \nu_I)(\bar{\tau}_I \gamma^\mu b_I) \qquad C_{II}^{\text{SM}} = 1$$

$$O_{LR}^{i} = (\bar{u}_{L}^{i} \gamma_{\mu} \nu_{L})(\bar{\tau}_{R} \gamma^{\mu} b_{R}) \qquad C_{LR}^{SM} = 0$$

- Lorentz structure
 - left-handed NP (=Fermi interaction!)
 - other structures also possible
- ► Size (scale)

Why both?

No obvious connection. Why combine both anomalies in a single NP framework?

$$\begin{array}{lll} b \rightarrow sll & & \\ (\bar{s}_L \gamma^\mu b_L)(\bar{\mu}_L \gamma_\mu \mu_L) & \bigstar & (\bar{c}_L \gamma^\mu b_L)(\bar{\tau}_L \gamma_\mu \nu_L) \end{array}$$

⇒ Minimal sol: left-handed NP in semi-leptonic operators (RH currents also possible)

$$\mathscr{L}_{\rm EFT}^{\rm NP} = -\frac{1}{\nu^2} \left(C_{lq}^{(3)} (\bar{l}_L \gamma^\mu \tau^a l_L) (\bar{q}_L \gamma^\mu \tau^a q_L) + C_{lq}^{(1)} (\bar{l}_L \gamma^\mu l_L) (\bar{q}_L \gamma^\mu q_L) \right) \approx -\frac{2}{\nu^2} C_{LL} \left(\bar{q}_L \gamma^\mu l_L \right) (\bar{l}_L \gamma_\mu q_L)$$
$$b \to s \nu \bar{\nu} \to C_{\ell q}^{(3)} \approx C_{\ell q}^{(1)} \equiv C_{LL}$$

Connection between anomalies:

$$R_{D^{(*)}} \Rightarrow b_L \rightarrow c_L \tau_L \nu_L \sim b_L \rightarrow s_L \tau_L \tau_L \Rightarrow \frac{b_L}{z_L} \sum_{\substack{l=e_l,\mu_l,z}} \Delta C_9^U$$

 $U(2)^{5} = U(2)_{q} \times U(2)_{l} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}$ $\psi = (\psi_{1} \psi_{2}) \psi_{3})$

Why both?

$$U(2)^{5} = U(2)_{q} \times U(2)_{l} \times U(2)_{u} \times U(2)_{d} \times U(2)_{e}$$
$$\psi = (\underbrace{\psi_{1} \psi_{2}}) \psi_{3})$$

SM masses & mixings, "flavored" alternative to MFV [Barbieri et al.,1105.3396]

$$Y = y_{3} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 exact U(2)⁵
$$Y = y_{3} \begin{bmatrix} \Delta & V \\ 0 & 1 \end{bmatrix}$$
 minimally broken
U(2)⁵

 $|V_q| = \epsilon_q = \mathcal{O}(y_t |V_{ts}|) |\Delta_{u,d,e}| \sim y_{c,s,\mu}$

 $U(2)^5 = U(2)_q \times U(2)_l \times U(2)_u \times U(2)_d \times U(2)_e$

 $\psi = ((\psi_1 \ \psi_2) \ \psi_3)$

exact U(2)5

minimally broken

U(2)⁵

SM masses & mixings, "flavored" alternative to MFV [Barbieri et al.,1105.3396]

Same pattern? [Barbieri et al.,1512.01560]

NP coupled only to 3rd family

NP max for 3rd family, suppressed by $\epsilon_q(\epsilon_l)$ for each 2nd family quark (lepton)

 $|V_q| = \epsilon_q = \mathcal{O}(y_t |V_{ts}|) |\Delta_{u,d,e}| \sim y_{c,s,\mu}$

 $Y = y_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $Y = y_3 \begin{bmatrix} \Delta & V \\ 0 & 1 \end{bmatrix}$

 $U(2)^5 = U(2)_q \times U(2)_l \times U(2)_u \times U(2)_d \times U(2)_e$

 $\psi = ((\psi_1 \ \psi_2) \ \psi_3)$

exact U(2)5

minimally broken

U(2)⁵

SM masses & mixings, "flavored" alternative to MFV [Barbieri et al.,1105.3396]

Same pattern? [Barbieri et al.,1512.01560]

NP coupled only to 3rd family

NP max for 3rd family, suppressed by $\epsilon_q(\epsilon_l)$ for each 2nd family quark (lepton)

 $|V_q| = \epsilon_q = \mathcal{O}(y_t |V_{ts}|) |\Delta_{u,d,e}| \sim y_{c,s,\mu}$

 $Y = y_3 \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

 $Y = y_3 \begin{bmatrix} \Delta & V \\ 0 & 1 \end{bmatrix}$

LFU tests in au decays]

EFT for combined explanations (LL + LR)

$$\mathscr{L}_{\rm EFT}^{\rm NP} = -\frac{2}{v^2} \left[C_{LL}^{ij\alpha\beta} \left(\bar{q}_L^i \gamma^\mu l_L^\alpha \right) (\bar{l}_L^\beta \gamma_\mu q_L^j) + \left(C_{LR}^{ij\alpha\beta} (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j) + {\rm h.c.} \right) + C_{RR}^{ij\alpha\beta} (\bar{d}_R^i \gamma_\mu e_R^\alpha) (\bar{e}_R^\beta \gamma^\mu d_R^j) \right]$$

0.006 [CC, Fuentes et al., 2103.16558] other $b \to s \mu^+ \mu^-$ observables • LR helps saturating $R_{D^{(*)}}$ 0.004 $\rightarrow \tau$ LFU and B_s - \overline{B}_s less stringent. (95% CL) $|\delta(\Delta m_{B_s})| > 10\%$ for $\Lambda_{bs} = 1$ TeV ${\cal C}_{LL}^{23 au\pi}$ 0.002 • Both chiralities enter $pp \rightarrow \tau \tau$ $\tau\tau$ \uparrow $b \to c \tau \bar{\nu}$ \rightarrow stronger high- p_T bounds. dd0.3 0.2 0.000 -0.002 0.000 0.002 0.004 0.006 $\mathcal{C}_{LL}^{33\tau\tau}$

NP interpretation (II): the U₁ simplified model

Which mediator?

Only leptoquarks (scalars & vectors) are viable tree-level mediators

 \checkmark no 4-lepton and 4-quark processes at tree level

✓ no resonant production in quark-quark initiated processes

•	Three	possibilities	for a	combined	explanation:
---	-------	---------------	-------	----------	--------------

• $S_1 + S_3$ [Crivellin et al 1703.09226; Buttazzo et al. 1706.078C Marzocca 1803.10972...]

•
$$R_2 + S_3$$
 [Bečirević et al., 1806.05689]

[di Luzio et al., 1708.08450; Calibbi et al., 1709.00692; Bordone, CC, et al. 1712.01368; Barbieri, Tesi 1712.06844; Heck,Teresi 1808.07492...]

 \checkmark no $b \rightarrow s \nu \bar{\nu}$ at tree level

Model	$R_{K^{(*)}}$	$R_{D^{(*)}}$	$\boxed{R_{K^{(*)}} \ \& \ R_{D^{(*)}}}$
S_3 (3 , 3 , 1/3)	\checkmark	×	×
S_1 (3 , 1 , 1/3)	×	✓	×
R_2 (3 , 2 , 7/6)	×	✓	×
U_1 (3 , 1 , 2/3)	\checkmark	\checkmark	\checkmark
U_3 (3 , 3 , 2/3)	\checkmark	×	×

[Sumensari et al., 2103.12504]

[See also David's talk]

The U_1 simplified model

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} \left(\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha} \right) + \beta_R^{i\alpha} \left(\bar{d}_R^i \gamma_{\mu} e_R^{\alpha} \right) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$$\beta^{L} = \begin{pmatrix} 0 & 0 & \beta_{d\tau}^{L} \\ 0 & \beta_{s\mu}^{L} & \beta_{s\tau}^{L} \\ 0 & \beta_{b\mu}^{L} & \beta_{b\tau}^{L} \end{pmatrix} \qquad \beta^{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{b\tau}^{R} \end{pmatrix} \qquad \beta_{b\tau}^{R} \sim \mathcal{O}(1)$$

$$R_{K^{(*)}} \qquad R_{D^{(*)}} \qquad b \rightarrow s\tau\mu \text{ [tree]} \qquad \beta^{L} \rightarrow s\tau\mu \text{ [tree]} \qquad \beta_{s\mu}^{L}, \beta_{d\tau}^{L} \sim \mathcal{O}(0.01)$$

$$b \rightarrow s\tau\tau \text{ [tree]}$$

Benchmarks: 1. $\beta_{b\tau}^{R} = 0$ 2. $|\beta_{b\tau}^{R}| = |\beta_{b\tau}^{L}| = 1$ [models with 3rd family quark-lepton unification]

 \checkmark Good description of all low-energy data with U(2)-like flavor structure.

The U_1 simplified model

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_L^{i\alpha} (\bar{q}_L^i \gamma_\mu \mathcal{E}_L^\alpha) + \beta_R^{i\alpha} (\bar{d}_R^i \gamma_\mu e_R^\alpha) \right] + \text{h.c.} \qquad U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$$

$$\beta^{L} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \tau \to \mu\gamma \text{ [loop]} \end{pmatrix} \beta^{R} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \beta_{b\tau}^{R} \end{pmatrix} \beta^{L}_{b\tau} \sim \mathcal{O}(1)$$

$$\beta^{L}_{s\tau}, \beta^{L}_{b\mu} \sim \mathcal{O}(0.1)$$

$$\beta^{L}_{s\mu}, \beta^{L}_{d\tau} \sim \mathcal{O}(0.01)$$

$$b \to s\tau\tau \text{ [tree]} \qquad \beta^{L}_{s\mu}, \beta^{L}_{d\tau} \sim \mathcal{O}(0.01)$$

Benchmarks: 1. $\beta_{b\tau}^{R} = 0$ 2. $|\beta_{b\tau}^{R}| = |\beta_{b\tau}^{L}| = 1$ [models with 3rd family quark-lepton unification]

 \checkmark Good description of all low-energy data with U(2)-like flavor structure.

Low-energy predictions for the U_1

• large $b \rightarrow s \tau \tau$

• large τ/μ LFV in $b \rightarrow s\tau\mu$ and τ decays

High-pT bounds for the U_1

The same interaction can be probed in di-tau tails. Expected excess in $pp \rightarrow \tau^+ \tau^-$! [Faroughy et al, 1609.07138]

5.0

NP interpretation (III): UV completing the U₁

UV-completing the U_1 : the gauge path

[Pati, Salam, Phys. Rev. D10 (1974) 275]

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

X flavor-blind U_1 mediates $K_L \rightarrow \mu e \Rightarrow m_{U_1} \gtrsim 100 \,\text{TeV}$

 \mathbf{X} *extra fermions can make the U_1 non-universal, not the Z'

 \times strongly coupled, universal Z' would be excessively produced at the LHC

UV-completing the U_1 : the gauge path

[Pati, Salam, Phys. Rev. D10 (1974) 275]

 $U_1 \sim (3,1,2/3) \longrightarrow SU(4) \longrightarrow PS = SU(4) \times SU(2)_L \times SU(2)_R$

 \checkmark flavor-blind U_1 mediates $K_L \rightarrow \mu e \Rightarrow m_{U_1} \gtrsim 100 \,\text{TeV}$

 \mathbf{X} *extra fermions can make the U_1 non-universal, not the Z'

 \times strongly coupled, universal Z' would be excessively produced at the LHC

 $\mathscr{G}_{4321} = SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$ $4321/SM \ni U_1, Z', G' \sim (8, 1, 0)$

✓ SU(4) decorrelated from $SU(3)_c$. High-pT problem solved for $g_4 \gg g_1, g_3$

✓ both Z' and U_1 can be flavor non-universal

[Georgi and Y. Nakai, 1606.05865; Diaz, Schmaltz, Zhong, 1706.05033; Di Luzio, Greljo, Nardecchia, 1708.08450]

Non-universality via mixing

[di Luzio, Greljo, Nardecchia, 1708.08450; di Luzio, Fuentes-Martin, Greljo, Nardecchia, Renner 1808.00942]

$$\mathcal{G}_{4321} = SU(4) \times SU(3)' \times SU(2)_L \times U(1)'$$

Flavor-universal gauge interactions

- all SM families have SM-like charges under 321
- only vector-like fermions are charged under 4
- no direct NP couplings to SM fields.

- flavor structure of U_1 interactions for B anomalies generated via hierarchical choice of mixing angles
 - \rightarrow 3rd family has to be the "most composite"
- can have U_1 coupled only to left-handed SM fields
- Yukawa couplings as in the SM. No connection flavor anomalies & hierarchies.

Non-universal gauge interactions

[Bordone, CC, Fuentes-Martin, Isidori 1712.01368, 1805.09328; Greljo, Stefanek, 1802.04274; CC, Fuentes-Martin, Isidori 1903.11517]

 $\mathscr{G}_{4321} = SU(4)_3 \times SU(3)'_{1+2} \times SU(2)_L \times U(1)$

- Flavor non-universal gauge interactions
- light SM families: SM-like charges under 321
- vectorlike fermions and 3rd SM family charged under 4
 - accidental $U(2)^5$ $\psi = (\psi_1 \psi_2) \psi_3$)
 - direct NP coupling to 3rd SM family (L+R)
 - TeV scale 3rd family quark-lepton unification

	Field	$SU(4)_3$	$SU(3)_{1+2}$	$SU(2)_L$	$U(1)_{Y'}$	SM fields
•••	יא q_L^i	1	3	2	1/6	
	u_R^i	1	3	1	2/3	
	d_R^i	1	3	1	-1/3	IST & 200
	ℓ_L^i	1	1	2	-1/2	lamiy
	$e_R^{\overline{i}}$	1	1	1	-1	
	ψ_L^3	4	1	2	0	Ord formily
	$\psi^3_{R_{u,d}}$	4	1	1	$\pm 1/2$	Sru larnily
	χ^i_L	4	1	2	0	vectorlike
	χ^i_R	4	1	2	0	fermions
	Н	1	1	2	1/2	
	Ω_1	$ar{4}$	1	1	-1/2	scalar
	Ω_3	$ar{4}$	3	1	1/6	sector
	Ω_{15}	15	1	1	0	

i = 1.2

Non-universal gauge interactions

[Bordone, CC, Fuentes-Martin, Isidori 1712.01368, 1805.09328; Greljo, Stefanek, 1802.04274; CC, Fuentes-Martin, Isidori 1903.11517]

 $\mathcal{G}_{4321} = SU(4)_3 \times SU(3)'_{1+2} \times SU(2)_L \times U(1)$

- Flavor non-universal gauge interactions
- light SM families: SM-like charges under 321
- vectorlike fermions and 3rd SM family charged under 4
 - accidental $U(2)^5$ $\psi = (\psi_1 \psi_2) \psi_3$)
 - direct NP coupling to 3rd SM family (L+R)
 - TeV scale 3rd family quark-lepton unification

• $U(2)^5$ broken by SM-vectorlike mixing

Leading breaking:

- U_1 couplings to light families for B anomalies
- 2-3 CKM mixing
- ✓ connection flavor anomalies & hierarchies!

*Mild 2-3 down alignment required to suppress G' and Z' contribution to B_s - \bar{B}_s

' 	Field	$SU(4)_3$	$SU(3)_{1+2}$	$SU(2)_L$	$U(1)_{Y'}$	SM fields
•••	$\cdot\cdot ightarrow q_L^i$	1	3	2	1/6	
	u_R^i	1	3	1	2/3	tot 0 Opd
	d_R^i	1	3	1	-1/3	ISL& ZNU
	ℓ^i_L	1	1	2	-1/2	larniy
	e_R^i	1	1	1	-1	
	ψ_L^3	4	1	2	0	2rd family
	$\psi^3_{R_{u,d}}$	4	1	1	$\pm 1/2$	Siu lainii
	χ^i_L	4	1	2	0	vectorlike
	χ^i_R	4	1	2	0	fermions
	Н	1	1	2	1/2	
	Ω_1	$\bar{4}$	1	1	-1/2	scalar
	Ω_3	$\overline{4}$	3	1	1/6	sector
	Ω_{15}	15	1	1	0	

Subleading breaking:

constrained by $K_L \rightarrow \mu e$, $K \cdot \overline{K}$ and $D \cdot \overline{D}$

i = 1.2

UV-sensitive low-energy observables

[Selimovic et al., 2009.11296] [CC, Fuentes et al., 2103.16558]

A three-scale picture

[Barbieri, 2103.15635, Bordone, CC, Fuentes, Isidori 1712.01368 Panico, Pomarol, 1603.06609 Dvali, Shiftman, '00, ...]

B anomalies might hint at a three-scale picture:

Non-universal Pati-Salam unification

PS³: 4D three-site model

[Bordone, CC, Fuentes, Isidori 1712.01368]

• 5D construction

warped compact extra dimension with multiple 4-dimensional branes

[Fuentes-Martin, Isidori, Pagès, Stefanek, 2012.10492] [Fuentes-Martin, Isidori, Lizana, Stefanek, Selimovic, 2203.01952]

A lot more in Ben's talk on Friday!

Conclusions and outlook

B anomalies could be the manifestation of a new interaction violating LFU. In the coming years, on-going experiments will have the final word about their nature.

- Consistent picture, but present data in $b \rightarrow c\tau\nu$ require NP to be quite close: if $R_{D^{(*)}}$ stays, we NP effects must show up soon, at low and high energy. Need experimental guidance!
- Taken together, they point to TeV-scale leptoquark(s) coupled dominantly to the 3rd family.
 - \rightarrow flavor non-universal gauge interactions?
 - \rightarrow multi-scale picture at the origin of flavor?

