EFT ANALYSIS OF b→sl⁺l⁻ TRANSITIONS

Luca Silvestrini INFN, Rome

- Introduction
- $\bullet\,\text{EFT}\,\text{for}\,b\to\text{s}\,\text{II}\,\text{fits}$
- Current status
- Conclusions

Based on M. Ciuchini, M. Fedele, E. Franco, A. Paul, L.S. & M. Valli, arXiv:2110.10126. See also Geng et al., arXiv:2103.12738, Cornella et al., 2103.16558, Hurth et al., 2104.10058, Alguerò et al., arXiv:2104.08921

Many thanks to M. Fedele and A. Paul!

$b \rightarrow s \ l^+l^- decays$

- $b \rightarrow sl^+l^-$ transitions are FCNC
 - cannot occur at tree-level in the SM
 - they arise at one loop through penguins and boxes
 - they are particularly sensitive to possible NP contributions
 - since V_{ub}V_{us}* << V_{cb}V_{cs}* ≈ V_{tb}V_{ts}*, top and charm quarks dominate loop contributions

1) Assume NP heavier than EW scale:

- NP contributions invariant under SM gauge group
- Can be written in terms of SMEFT operators
 built with Qi, ui, di, Li, ei, Higgs and SU(3) × SU(2)
 x U(1) gauge fields:

$$\begin{split} O_{2223}^{LQ^{(1)}} &= (\bar{L}_2 \gamma_{\mu} L_2) (\bar{Q}_2 \gamma^{\mu} Q_3) \,, \\ O_{2223}^{LQ^{(3)}} &= (\bar{L}_2 \gamma_{\mu} \tau^A L_2) (\bar{Q}_2 \gamma^{\mu} \tau^A Q_3) \,, \\ O_{2322}^{Qe} &= (\bar{Q}_2 \gamma_{\mu} Q_3) (\bar{e}_2 \gamma^{\mu} e_2) \,, \qquad + \mathsf{L}_2, \, \mathsf{e}_2 \to \mathsf{L}_1, \, \mathsf{e}_1 \\ O_{2223}^{Ld} &= (\bar{L}_2 \gamma_{\mu} L_2) (\bar{d}_2 \gamma^{\mu} d_3) \,, \\ O_{2223}^{ed} &= (\bar{e}_2 \gamma_{\mu} e_2) (\bar{d}_2 \gamma^{\mu} d_3) \,, \end{split}$$

La Thuile, 9/3/22

2) Expand H around its vev, integrate out W[±], Z and t:

- W, Z, t & NP contributions can be written in terms of
 WET operators built with dⁱ_{L,R}, uⁱ_{L,R}, lⁱ_{L,R}, photons & gluons:
- $$\begin{split} Q_{1}^{p} &= (\bar{s}_{L}\gamma_{\mu}T^{a}p_{L})(\bar{p}_{L}\gamma^{\mu}T^{a}b_{L}), \qquad \textbf{p=u,c} \\ Q_{2}^{p} &= (\bar{s}_{L}\gamma_{\mu}p_{L})(\bar{p}_{L}\gamma^{\mu}b_{L}), \qquad \textbf{q=u,d,s,c,b} \\ P_{3} &= (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q), \\ P_{4} &= (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q), \\ P_{5} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}q), \\ P_{6} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}T^{a}q), \\ Q_{8g} &= \sqrt{\frac{\alpha_{s}}{64\pi^{3}}}m_{b}\bar{s}_{L}\sigma_{\mu\nu}G^{\mu\nu}b_{R}. \end{split}$$

 $Q_{7\gamma} = \sqrt{\frac{\alpha_e}{64\pi^3}} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_I$ $Q_{9V} = \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell) ,$ $Q_{10A} = \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma^5 \ell) ,$ $Q_S = \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \ell) ,$ $Q_P = \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \gamma^5 \ell) .$

2) Expand H around its vev, integrate out W[±], Z and t:

- W, Z, t & NP contributions can be written in terms of
 WET operators built with dⁱ_{L,R}, uⁱ_{L,R}, lⁱ_{L,R}, photons & gluons:
- $$\begin{split} Q_{1}^{p} &= (\bar{s}_{L}\gamma_{\mu}T^{a}p_{L})(\bar{p}_{L}\gamma^{\mu}T^{a}b_{L}), \qquad \textbf{p=u,C} \\ Q_{2}^{p} &= (\bar{s}_{L}\gamma_{\mu}p_{L})(\bar{p}_{L}\gamma^{\mu}b_{L}), \qquad \textbf{q=u,d,s,c,b} \\ P_{3} &= (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q), \\ P_{4} &= (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q), \\ P_{5} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}q), \\ P_{6} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}T^{a}q), \\ Q_{8g} &= \sqrt{\frac{\alpha_{s}}{64\pi^{3}}}m_{b}\bar{s}_{L}\sigma_{\mu\nu}G^{\mu\nu}b_{R}. \end{split}$$

NP contributions from SMEFT operators

La Thuile, 9/3/22

Luca Silvestrini

 $Q_{7\gamma} = \sqrt{\frac{\alpha_e}{64\pi^3}} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_l$ $Q_{9V} = \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell) \,,$ $Q_{10A} = \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma^5 \ell) \,,$ $Q_S = \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell}\ell) \,,$ $Q_P = \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \gamma^5 \ell) \,.$ $C_9^{\rm NP} = \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{LQ^{(1)}} + C_{2223}^{LQ^{(3)}} + C_{2322}^{Qe} \right) \,,$ $C_{10}^{\rm NP} = \frac{\pi v^2}{\alpha \ \lambda_1 \Lambda_{2m}^2} \left(C_{2322}^{Qe} - C_{2223}^{LQ^{(1)}} - C_{2223}^{LQ^{(3)}} \right) \,,$ $C_{9}^{\prime,\rm NP} = \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm SPR}^2} \left(C_{2223}^{ed} + C_{2223}^{Ld} \right) \,,$ $C_{10}^{\prime,\rm NP} = \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm ND}^2} \left(C_{2223}^{ed} - C_{2223}^{Ld} \right) \,,$

2) Expand H around its vev, integrate out W[±], Z and t:

- W, Z, t & NP contributions can be written in terms of
 WET operators built with dⁱ_{L,R}, uⁱ_{L,R}, lⁱ_{L,R}, photons & gluons:
- $$\begin{split} Q_{1}^{p} &= (\bar{s}_{L}\gamma_{\mu}T^{a}p_{L})(\bar{p}_{L}\gamma^{\mu}T^{a}b_{L}), \qquad \textbf{p=u,c} \\ Q_{2}^{p} &= (\bar{s}_{L}\gamma_{\mu}p_{L})(\bar{p}_{L}\gamma^{\mu}b_{L}), \qquad \textbf{q=u,d,s,c,b} \\ P_{3} &= (\bar{s}_{L}\gamma_{\mu}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}q), \\ P_{4} &= (\bar{s}_{L}\gamma_{\mu}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q), \\ P_{5} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}q), \\ P_{6} &= (\bar{s}_{L}\gamma_{\mu1}\gamma_{\mu2}\gamma_{\mu3}T^{a}b_{L})\sum_{q}(\bar{q}\gamma^{\mu1}\gamma^{\mu2}\gamma^{\mu3}T^{a}q), \\ Q_{8g} &= \sqrt{\frac{\alpha_{s}}{64\pi^{3}}}m_{b}\bar{s}_{L}\sigma_{\mu\nu}G^{\mu\nu}b_{R}. \end{split}$$

Run from EW scale to m_b : C_9 gets a large $log(M_W^2/m_b^2)$ from mixing with Q_2^c

La Thuile, 9/3/22

Luca Silvestrini

$$\begin{split} Q_{7\gamma} &= \sqrt{\frac{\alpha_e}{64\pi^3}} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_I \\ Q_{9V} &= \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell) , \\ Q_{10A} &= \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma^5 \ell) , \\ Q_{10A} &= \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \ell) , \\ Q_S &= \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \ell) , \\ Q_P &= \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \gamma^5 \ell) . \\ C_{9}^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{LQ^{(1)}} + C_{2223}^{LQ^{(3)}} + C_{2322}^{Qe} \right) , \\ C_{10}^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2322}^{Qe} - C_{2223}^{LQ^{(1)}} - C_{2223}^{LQ^{(3)}} \right) , \\ C_{9}'^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{ed} + C_{2223}^{Ld} \right) , \\ C_{10}'^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{ed} - C_{2223}^{Ld} \right) , \end{split}$$

2) Expand H around its vev, integrate out W[±], Z and t:

W, Z, t & NP contributions can be written in terms of
 WET operators built with dⁱ_{L,R}, uⁱ_{L,R}, lⁱ_{L,R}, photons & gluons:

Small coefficients or doubly Cabibbo suppressed

La Thuile, 9/3/22

Luca Silvestrini

$$\begin{split} Q_{7\gamma} &= \sqrt{\frac{\alpha_e}{64\pi^3}} m_b \bar{s}_L \sigma_{\mu\nu} F^{\mu\nu} b_l \\ Q_{9V} &= \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \ell) , \\ Q_{10A} &= \frac{\alpha_e}{4\pi} (\bar{s}_L \gamma_\mu b_L) (\bar{\ell} \gamma^\mu \gamma^5 \ell) , \\ Q_S &= \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \ell) , \\ Q_P &= \frac{\alpha_e}{4\pi} (\bar{s}_L b_R) (\bar{\ell} \gamma^5 \ell) . \\ C_9^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{LQ^{(1)}} + C_{2223}^{LQ^{(3)}} + C_{2322}^{Qe} \right) , \\ C_{10}^{\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2322}^{Qe} - C_{2223}^{LQ^{(1)}} - C_{2223}^{LQ^{(3)}} \right) , \\ C_{9}^{\prime,\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{ee} + C_{2223}^{LQ} \right) , \\ C_{10}^{\prime,\rm NP} &= \frac{\pi v^2}{\alpha_e \lambda_t \Lambda_{\rm NP}^2} \left(C_{2223}^{ee} - C_{2223}^{LQ^{(1)}} \right) , \end{split}$$

- 3) Compute matrix elements of WET operators:
 - $B_s \rightarrow \mu \overline{\mu}$ only from <Q10>, no large logs, very clean
 - $B \rightarrow K^{(*)} |_{+}|_{-}$ from:
 - Q_9 , Q_7 and Q_{10} at tree level;
 - Q_{1,2}^c at one loop:
 - O($4\pi\alpha_s$) (factorizes in the $m_b \rightarrow \infty$ limit, perturbative) or
 - $O(16\pi^2\Lambda/m_b)$ (power correction, nonperturbative)

THE CHARM CONTRIBUTION

- Computable in the infinite m_b limit (QCDF)
- Bjorken; Beneke, Buchalla, Neubert & Sachrajda; Beneke, Feldmann & Seidel
 In the real world, nonperturbative power corrections due to the intermediate ccsd state are important Ciuchini et al
- Nonperturbative methods working in Euclidean spacetime (lattice, QCDSR) cannot (yet) cope with rescattering in B decays

Maiani & Testa

- Two classes of power corrections:
 - $B \rightarrow K^{(*)}$ + ($cc \rightarrow l^+l^-$): has known analytic structure in q^2 ; can be estimated at low q^2 using LCSR _{Khodjamirian} et al; Gubernari et al.
 - B→ (ccsd)→K^(*)I⁺I⁻, e.g. B→ (D_s^(*) D^(*))→K^(*)I⁺I: unrelated to q² singularities, no estimate available. Notice: BESIII observes a near-threshold structure in the K recoil in e⁺e⁻ → (D_s^(*) D^(*)) K arXiv:2011.07855

WHAT IS AFFECTED BY CHARMING PENGUINS?

• Charming penguins do not affect observables independent on photon exchange, i.e. on C_{7,9}:

- $BR(B_q \rightarrow \ell^* \ell^-)$

- In the Standard Model, charming penguins do not affect Lepton Universality (LU) ratio predictions, which are 1 up to lepton mass effects and QED corrections:
 - **R**_K, **R**_{K*}, **R**_{pK}, ...
- Anything else, including LU ratios beyond the SM, is affected by charming penguins.

HOW TO PERFORM AN EFT FIT

- Current evidence of LUV calls for NP, but LU ratios beyond the SM in general depend on charming penguins: determine simultaneously EFT coefficients and charming penguins from a global fit of all b→sl⁺l⁻ observables
 - Fully Data Driven: no assumption about charming penguins (except for Taylor expansion in q²); equivalent to, but more powerful than, fit of LUV ratios only See also Isidori et al.
 - Partly Model Dependent: assume LCSR result for charming penguins at small q² only
 - Fully Model Dependent: assume LCSR result and analytic structure in q²

ONE-DIMENSIONAL NP SCENARIOS

- Dramatic effect of charming penguins on the C₉^{NP} scenario
- Moderate effect on C^{LQ} , small effect on C_{10}^{NP}
- Using IC=-2 $\langle \log \mathscr{L} \rangle + 4\sigma^2_{\log \mathscr{L}}$, C_9^{NP} is largely preferred using LCSR + analyticity, while C^{LQ} and C_{10}^{NP} are preferred with more conservative assumptions

TWO-DIMENSIONAL NP SCENARIOS

Inference on NP coefficients depends on assumptions on charming penguins. In Data Driven fit, $\triangle IC$ similar to 1D C^{LQ} and C_{10}^{NP} scenarios.

La Thuile, 9/3/22

Luca Silvestrini

FOUR-DIMENSIONAL NP FIT

- Dependence on charming penguins evident
- 4D scenario is favoured using QCDSR + analyticity, disfavoured in Data Driven approach

CONCLUSIONS

- Evidence for LUV in $b \rightarrow sl^+l^-$ transitions very exciting
- Unbiased NP inference calls for a conservative treatment of charming penguins
- A purely data driven approach is the way to go, already offering remarkable insight on NP thanks to the huge experimental progress
- It's time for a joint th+exp effort to optimize our hunt for NP!

BACKUP

NP scenario	Approach	68% HPDI			
	Data Driven	$[-3.04, -1.10] \cup [1.48, 1.99]$	$21 \cup 13$		
A: $C_9^{\rm NP}$	LCSR $q^2 \le 1$	[-1.44, -1.01]	43		
	LCSR	[-1.37, -1.12]	94		
	Data Driven	[0.65, 1.05]	38		
B: C^{LQ}_{2223}	LCSR $q^2 \le 1$	[0.67, 0.88]	60		
	LCSR	[0.77, 0.96]	75		
	Data Driven	[0.53, 0.79]	39		
C: $C_{10}^{\rm NP}$	LCSR $q^2 \leq 1$	[0.66, 0.90]	54		
	LCSR	[0.56, 0.79]	20		
	Data Driven	$\{[0.20, 1.03], [-0.82, 0.15]\}$	37		
D: $\{C^{LQ}_{2223}, C^{Qe}_{2322}\}$	LCSR $q^2 \leq 1$	$\{[0.61, 0.86], [-0.37, 0.11]\}$	57		
	LCSR	$\{[0.90, 1.10], [0.53, 0.79]\}$	96		
	Data Driven	$\{[-0.81, 0.46], [0.51, 0.83]\}$	37		
D: $\{C_9^{\rm NP}, C_{10}^{\rm NP}\}$	LCSR $q^2 \le 1$	$\{[-0.67,-0.20],[0.47,0.76]\}$	57		
	LCSR	$\{[-1.33,-1.06],[0.15,0.34]\}$	96		
E: $\{C^{LQ}_{2223}, C^{Qe}_{2322},$	Data Driven	$\{[-0.06, 1.18], [-0.99, 0.35], [-1.30, 0.34], [-1.25, 0.56]\}$	30		
$C^{Ld}_{2223}, C^{ed}_{2223}\}$	LCSR $q^2 \le 1$	$ \leq 1 \{ [0.83, 1.32], [-0.05, 0.76], [-0.59, -0.10], [-0.58, 0.27] \} $			
	LCSR	$\{[1.03, 1.23], [0.69, 0.97], [-0.49, -0.17], [-0.25, 0.43]\}$	105		
E: $\{C_9^{\rm NP}, C_{10}^{\rm NP},$	Data Driven	$\{[-1.05, 0.75], [0.38, 0.81], [-0.57, 1.82], [-0.31, 0.12]\}$	30		
$C_9'^{,\rm NP}, C_{10}'^{,\rm NP}\}$	LCSR $q^2 \le 1$	$\{[-1.45, -0.59], [0.29, 0.70], [-0.06, 0.82], [-0.37, 0.08]\}$	54		
	LCSR	$\{[-1.55, -1.27], [0.11, 0.31], [-0.17, 0.52], [-0.47, -0.14]\}$	105		

	Approach	$egin{array}{c} R_K \ [1.1,6] \end{array}$	$R_{K^*} \ [0.045, 1.1]$	$egin{array}{c} R_{K^*} \ [1.1,6] \end{array}$	$P_5^\prime \ [4,6]$	$P_5^\prime \ [6,8]$	$egin{array}{c} B_s ightarrow \mu \mu \ imes 10^9 \end{array}$
Exp.	-	0.848(42)	0.680(93)	0.71(10)	-0.439(117)	-0.583(095)	2.86(33)
A	Data Driven	0.84(4)	0.86(4)	0.81(13)	-0.47(5)	-0.53(7)	3.58(11)
	LCSR $q^2 \leq 1$	0.76(4)	0.89(1)	0.85(3)	-0.44(5)	-0.55(6)	3.58(11)
	LCSR	0.76(2)	0.89(1)	0.83(1)	-0.45(4)	-0.59(4)	3.58(11)
в	Data Driven	0.83(4)	0.85(2)	0.75(5)	-0.48(5)	-0.54(7)	2.64(21)
	LCSR $q^2 \leq 1$	0.76(3)	0.86(1)	0.76(3)	-0.46(5)	-0.56(6)	2.74(11)
	LCSR	0.72(3)	0.85(1)	0.74(3)	-0.63(3)	-0.74(2)	2.65(10)
С	Data Driven	0.82(3)	0.86(1)	0.75(5)	-0.49(5)	-0.55(7)	2.56(19)
	LCSR $q^2 \leq 1$	0.83(2)	0.85(1)	0.76(3)	-0.48(5)	-0.57(6)	2.40(16)
	LCSR	0.84(3)	0.87(1)	0.74(3)	-0.73(3)	-0.80(2)	2.55(16)
D	Data Driven	0.83(4)	0.85(2)	0.75(6)	-0.49(5)	-0.55(7)	2.58(23)
	LCSR $q^2 \leq 1$	0.77(4)	0.85(1)	0.76(3)	-0.47(5)	-0.57(6)	2.67(21)
	LCSR	0.71(3)	0.87(1)	0.77(3)	-0.48(4)	-0.62(4)	3.20(16)
Е	Data Driven	0.84(4)	0.82(4)	0.68(8)	-0.48(6)	-0.55(7)	2.54(29)
	LCSR $q^2 \leq 1$	0.79(4)	0.81(3)	0.65(8)	-0.47(5)	-0.56(6)	2.64(24)
	LCSR	0.80(4)	0.82(2)	0.67(4)	-0.49(4)	-0.64(4)	2.80(22)

BACKUP

La Thuile, 9/3/22

Luca Silvestrini

