CKM & CPV in Charm and Beauty at LHCb

Peilian Li on behalf of the LHCb collaboration

Les XXIV Rencontres de Physique de la Vallée d'Aoste

6 - 12 March, La Thuile 2022

(ロ) (部) (E) (E)

CKM matrix

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} + \mathcal{O}(\lambda^4) \sim \begin{pmatrix} 1 & 0.2 & 0.004 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{pmatrix}$$

Key test of the SM: Verify unitarity of CKM matrix

- Magnitudes: branching fractions or mixing frequencies
- Phases: CP violation measurements
- · Sensitive to the physics beyond the SM

Outline

LHCb experiment is dedicated to beauty and charm physics \rightarrow an ideal lab for various CKM and CPV measurements

- CPV and mixing in charm decays:
 - ♦ Mass difference in $D^0 \to K^0_s h^+ h^-$ PRL127(2021)111801
 - ♦ Measuring y_{CP} with $D^0 \rightarrow h^+ h^-$ arXiv:2202.09106
 - \diamond CPV with $D^0 \rightarrow h^+ h^- \mu^+ \mu^-$ see details in V. Lisovskyi's talk

• Latest combination γ and charm mixing parameters JHEP12(2021)141

- \diamond New γ measurement with $B^- \rightarrow D(hh'\pi^0)h^-$ arXiv:2112.10617
- CPV in b baryons:
 - $\label{eq:relation} \begin{array}{ll} \diamond & \Lambda_b^0 \rightarrow Dp {K^ } & \mbox{PRD104(2021)112008} \\ \diamond & \Xi_b^- \rightarrow p {K^ + K^ } & \mbox{PRD104(2021)052010} \end{array}$

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

CPV and mixing in the D^0 system

Neutral meson mixing:

 $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle, |D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ with mixing parameters: $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$, and $x = \frac{m_1 - m_2}{\Gamma}$ \rightarrow CP violation in mixing if $\left|\frac{q}{p}\right| \neq 1$

Interference of mixing and decay in charm

・ロン ・四 と ・ ヨ と ・ ヨ

- \rightarrow CP violation if weak phase $\phi_f = \arg(\frac{q}{p} \frac{A_f}{A_f}) \neq 0$
- *CP* asymmetry: $y_{CP} \propto x \sin \phi(|\frac{q}{p}| |\frac{p}{q}|) + y \cos \phi(|\frac{q}{p}| + |\frac{p}{q}|)$ \rightarrow Precise knowledge of x and y are important!

CPV and mixing in the D^0 system

Neutral meson mixing:

 $|D_1\rangle = p|D^0\rangle + q|\overline{D}^0\rangle, |D_2\rangle = p|D^0\rangle - q|\overline{D}^0\rangle$ with mixing parameters: $y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$, and $x = \frac{m_1 - m_2}{\Gamma}$ \rightarrow CP violation in mixing if $\left|\frac{q}{p}\right| \neq 1$

Interference of mixing and decay in charm

- \rightarrow CP violation if weak phase $\phi_f = \arg(\frac{q}{p} \frac{A_f}{A_f}) \neq 0$
- *CP* asymmetry: $y_{CP} \propto x \sin \phi(|\frac{q}{p}| |\frac{p}{q}|) + y \cos \phi(|\frac{q}{p}| + |\frac{p}{q}|)$ \rightarrow Precise knowledge of x and y are important!

• Select $D^{*+} \rightarrow D^0 \pi^+$ with $D^0 \rightarrow f$ to tag the production flavor of D^0

Bin-flip method with $D^0 \rightarrow K^0_S h^+ h^-$

- · Bin-flip method: Dalitz-plot binning with minimal strong phase variations
 - ♦ Sensitivity to all mixing and CP violation parameters
 - Measure ratios of events in Dalitz-plot bins -b & +b for $D^0(R_b^+)$ and $\overline{D}^0(R_b^-)$
 - \rightarrow Model-independent & most acceptance effects cancelled

Bin-flip method with $D^0 \rightarrow K^0_S h^+ h^-$

(日) (四) (日) (日)

- · Bin-flip method: Dalitz-plot binning with minimal strong phase variations
 - ♦ Sensitivity to all mixing and CP violation parameters
 - Measure ratios of events in Dalitz-plot bins -b & +b for $D^0(R_b^+)$ and $\overline{D}^0(R_b^-)$

 \rightarrow Model-independent & most acceptance effects cancelled

For Dalitz bin b and decay-time bin j, $r_b = R_{bj}$ at t = 0, $X_b = e^{i\delta_D(b)}$, δ_D is the strong-phase difference

$$R_{bj}^{\pm} \approx \frac{r_b + r_b \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{\langle t^2 \rangle_j}{4} \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{\langle t^2 \rangle_j}{4} |z_{CP} \pm \Delta z|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}$$

 $z_{CP} \pm \Delta z \equiv -\left(\frac{q}{p}\right)^{\pm 1}(y + ix), \ x_{CP} = Im(z_{CP}), \ y_{CP} = Re(z_{CP}), \ \Delta x = Im(\Delta z), \ \Delta y = Re(\Delta z)$

• Non zero of Δx and $\Delta y \rightarrow \text{sign of } CP$ violation

Mass difference in the D^0 system

PRL127(2021)111801

- Simultaneous fit with 8 bins of D^0 and \overline{D}^0 to determine x_{CP} , y_{CP} , Δx and Δy
- Effect of mixing clearly visible

 $ightarrow x_{CP} = (3.97 \pm 0.36 \pm 0.29) imes 10^{-3}$, $y_{CP} = (4.59 \pm 1.20 \pm 0.85) imes 10^{-3}$

Mass difference in the D^0 system

- *CP* violation: Look at differences of ratios for D^0 and \overline{D}^0
- Consistent with CP symmetry

 $\rightarrow \Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}, \ \Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

Mass difference in the D^0 system

- *CP* violation: Look at differences of ratios for D^0 and \overline{D}^0
- Consistent with CP symmetry

 $ightarrow \Delta x = (-0.27 \pm 0.18 \pm 0.01) \times 10^{-3}, \ \Delta y = (0.20 \pm 0.36 \pm 0.13) \times 10^{-3}$

arXiv:2202.09106

- Measuring decay-time ratio of $D^0 o f(h^+h^-)$ over $D^0 o K^+\pi^-$
- Precise $y_{CP}^f y_{CP}^{K\pi}$ adds constraint to $y = \frac{\Gamma_1 \Gamma_2}{2\Gamma}$

$$R^{f}(t) = \frac{N(D^{0} \rightarrow f, t)}{N(D^{0} \rightarrow K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

• $D^0 \to f$ kinematics are matched with $D^0 \to K^- \pi^+$ to ensure equal acceptance of kinematic phase space

arXiv:2202.09106

- Measuring decay-time ratio of $D^0 o f(h^+h^-)$ over $D^0 o K^+\pi^-$
- Precise $y_{CP}^f y_{CP}^{K\pi}$ adds constraint to $y = \frac{\Gamma_1 \Gamma_2}{2\Gamma}$

$$R^{f}(t) = \frac{N(D^{0} \to f, t)}{N(D^{0} \to K^{-}\pi^{+}, t)} \propto e^{-(y_{CP}^{f} - y_{CP}^{K\pi})t/\tau_{D^{0}}} \frac{\varepsilon(f, t)}{\varepsilon(K^{-}\pi^{+}, t)}$$

- $D^0 \to f$ kinematics are matched with $D^0 \to K^- \pi^+$ to ensure equal acceptance of kinematic phase space
- Fit to Δm : sum of three Gaussian + Johnson SU function for signal extraction

arXiv:2202.09106

• Combined: $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$

 \rightarrow improved precision by a factor of 4

• Previous world average: $y_{CP} - y_{CP}^{K\pi} = (7.16 \pm 0.93 \pm 0.60) \times 10^{-3}$

arXiv:2202.09106

• Combined: $y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}$

 \rightarrow improved precision by a factor of 4

- Previous world average: $y_{CP} y_{CP}^{K\pi} = (7.16 \pm 0.93 \pm 0.60) \times 10^{-3}$
- New: $(6.97 \pm 0.25 \pm 0.13) \times 10^{-3}$, dominated by LHCb's result

CP violating angle γ

- Relative weak phase γ in interference between $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$ transitions
- $\gamma \equiv arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$, measured with tree-level decays, theoretically simple

CP violating angle γ

- Relative weak phase γ in interference between $b \rightarrow c\bar{u}s$ and $b \rightarrow u\bar{c}s$ transitions
- $\gamma \equiv arg(-V_{ud}V_{ub}^*/V_{cd}V_{cb}^*)$, measured with tree-level decays, theoretically simple

- Interference occurs when D^0 and \overline{D}^0 decay to the same final state f
 - \diamond GLW: CP eigenstates, e.g. $D \rightarrow KK$, $D \rightarrow \pi\pi$
 - ♦ ADS: CF or DCS decays, e.g. $D \rightarrow K\pi$
 - ♦ BPGGSZ: self-conjugated 3-body final states, GLW/ADS analysis across the D decay phase space, e.g. $D \rightarrow K_s^0 \pi \pi$
 - $\diamond~$ Time-dependent: $B^0_s \to D^-_s {\cal K}^+$ & Dalitz: $B^0 \to \bar D^0 {\cal K}^+ \pi^-$
- Combination of all methods provides the best precision
 - Direct measurements from B decays: $\gamma = (72.1^{+5.4}_{-5.7})^{\circ}$
 - ♦ Indirectly inferred from other constraints: $\gamma_{\rm CKMFitter} = (65.55^{+0.90}_{-2.65})^{\circ}$

γ measurement

$$\Gamma(B^{\pm} o Dh^{\pm}) \propto |r_D e^{-i\delta_D} + r_B e^{i(\delta_B \pm \gamma)}|^2 \Rightarrow r_D^2 + r_B^2 + 2r_D r_B cos(\delta_B + \delta_D \pm \gamma)$$

- → External inputs: r_D and δ_D are the magnitude ratio and strong-phase difference between $D^0 \rightarrow f$ and $\overline{D}^0 \rightarrow f$, for GLW modes, $r_D = 1$ and $\delta_D = 0$
- $ightarrow ~ r_{B}, ~ \delta_{B} ~ r_{D}$ and $~ \delta_{D}$ are specific to each B decay and subsequent D decay
- \rightarrow CP-violating weak phase difference γ is shared by all such decays

 γ combination + charm mixing

$$\begin{split} \Gamma(B^{\pm} \to Dh^{\pm}) \propto r_D^2 + r_B^2 + 2r_D r_B cos(\delta_B + \delta_D \pm \gamma) \\ &- \alpha [(1 + r_B^2) r_D cos\delta_D - \alpha (1 + r_D^2) r_B cos(\delta_B \pm \gamma)] y \\ &+ \alpha [(1 - r_B^2) r_D sin\delta_D - \alpha (1 - r_D^2) r_B sin(\delta_B \pm \gamma)] \times \end{split}$$

- Larger B samples improve precisions of γ and δ_B \rightarrow similar precision of strong phase difference $\delta_D^{K\pi}$ possible
- Charm mixing parameter y is limited by the current precision of $\delta_D^{K\pi}$
- Simultaneous combination of both beauty and charm measurements sensitive to γ and charm mixing parameters

Combination of LHCb measurements

- Using the Gammacombo package
 - ightarrow a frequentist approach used with 151 observables to determine 52 parameters
 - \rightarrow 7 new/updated inputs from *B*-meson and 8 inputs from *D*-meson decays

B decay	D decay	Ref.	Dataset	Status since
				Ref. [17]
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+h^-$	[20]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[21]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+ h^- \pi^0$	[22]	Run 1	As before
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{S}^{0}h^{+}h^{-}$	[19]	Run 1&2	Updated
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow K_{S}^{0}K^{\pm}\pi^{\mp}$	[23]	Run 1&2	Updated
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^{+}h^{-}$	[20]	Run 1&2	Updated
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[24]	Run 1&2(*)	As before
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[24]	Run 1&2(*)	As before
$B^{\pm} \rightarrow Dh^{\pm}\pi^{+}\pi^{-}$	$D \rightarrow h^+ h^-$	[25]	Run 1	As before
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ h^-$	[26]	Run 1&2(*)	Updated
$B^0 \rightarrow DK^{*0}$	$D \rightarrow h^+ \pi^- \pi^+ \pi^-$	[26]	Run 1&2(*)	New
$B^0 \rightarrow DK^{*0}$	$D \rightarrow K_S^0 \pi^+ \pi^-$	[27]	Run 1	As before
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	$D^+ \rightarrow \tilde{K}^- \pi^+ \pi^+$	[28]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[29]	Run 1	As before
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[30]	Run 1&2	New
D decay	Observable(s)	Ref.	Dataset	Status since
				Ref. [17]
$D^0 \rightarrow h^+ h^-$	ΔA_{CP}	[31,32,33]	Run 1&2	New
$D^0 \rightarrow h^+ h^-$	y_{CP}	[34]	Run 1	New
$D^0 \rightarrow h^+ h^-$	ΔY	[35, 36, 37, 38]	Run 1&2	New
$D^0 \rightarrow K^+ \pi^-$ (Single Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[39]	Run 1	New
$D^0 \to K^+ \pi^-$ (Double Tag)	$R^{\pm}, (x'^{\pm})^2, y'^{\pm}$	[40]	Run 1&2(*)	New
$D^0 \rightarrow K^{\pm} \pi^{\mp} \pi^+ \pi^-$	$(x^2 + y^2)/4$	[41]	Run 1	New
$D^0 \rightarrow K_S^0 \pi^+ \pi^-$	x, y	[42]	Run 1	New
$D^0 \rightarrow K_S^{0}\pi^+\pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[43]	Run 1	New
$D^0 \rightarrow K_S^{0}\pi^+\pi^-$	$x_{CP}, y_{CP}, \Delta x, \Delta y$	[44]	Run 2 🕨 🔺	New 💿 🕨 🧃

3.5

Combination of LHCb measurements

 Around two sigma tension between B⁺ and B⁰ results
 γ = (65.4^{+3.8}_{-4.2})°, excellent agreement with indirect results: - UTFit: γ = (65.8 ± 2.2)° - CKM fitter: γ = (65.55^{+0.96}_{-2.65})°

* Does not include the latest $y_{CP} - y_{CP}^{K\pi}$ from arXiv:2202.09106

Combination of LHCb measurements

JHEP12(2021)141

•
$$x \equiv \frac{M_1 - M_2}{\Gamma} = (0.400^{+0.052}_{-0.053})\%$$

• $y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma} = (0.630^{+0.033}_{-0.030})\% \longrightarrow \text{Factor of 2 more precise in } y$
• $|q/p| = 0.997 \pm 0.016, \ \phi \equiv \arg(q/p) = (-2.4 \pm 1.2)^\circ$

* Does not include the latest $y_{CP} - y_{CP}^{K\pi}$ from arXiv:2202.09106

LHCb combination for charm only

arXiv:2202.09106

LHCb Charm only global fits taking latest $y_{CP} - y_{CP}^{K\pi}$ into account:

- Mixing parameter $y = \frac{\Gamma_1 \Gamma_2}{2\Gamma} = (6.46^{+0.24}_{-0.25}) \times 10^{-3}$ \rightarrow Further improvement (1.4×) w.r.t the previous combination
- Strong phase difference between CF and DCS $D^0 \rightarrow K\pi$: $\delta_D^{K\pi} = (192.1^{+3.7}_{-4.0})^{\circ} \rightarrow 3\sigma$ deviation from 180°, evidence for U-spin symmetry breaking

• Further improvement with simultaneous fit of γ

γ measurement with $B^{\pm} \rightarrow D(\rightarrow h^{\pm} h'^{\pm} \pi^0) h^{\pm}$

arXiv:2112.10617

- quasi-ADS modes $B^- \rightarrow D(\pi^{\mp} K^{\pm} \pi^0) h^-$:
 - \rightarrow $\textit{r}_{\textit{D}}$ as magnitude ratio of the favored and suppressed D decay
- quasi-GLW modes $B^- \to D(\pi^-\pi^+\pi^0)h^-$ and $B^- \to D(K^-K^+\pi^0)h^-$:
 - \rightarrow admixtures of CP-even and CP-odd states
- Sensitivity to γ varies over the phase space, dilution factor κ_D from quantum-correlated $D\bar{D}$ pairs produced at $\psi(3770)$

Simultaneous mass fit to 8 modes (16 subsamples) together

Mode	Yield
$B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^0]_D\pi^{\pm}$	4026 ± 77
$B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^0]_D \pi^{\pm}$	14180 ± 140
$B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^0]_D\pi^{\pm}$	140696 ± 589
$B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^0]_D \pi^{\pm}$	293 ± 27
$B^{\pm} \rightarrow [K^{\pm}K^{\mp}\pi^0]_D K^{\pm}$	401 ± 29
$B^{\pm} \rightarrow [\pi^{\pm}\pi^{\mp}\pi^0]_D K^{\pm}$	1189 ± 51
$B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{\bar{0}}]_D K^{\pm}$	12265 ± 158
$B^{\pm} \rightarrow [\pi^{\pm} K^{\mp} \pi^0]_D K^{\pm}$	155 ± 19

< 日 > < 同 > < 三 > < 三 > <

KM & CPV in Charm and Beauty at LHCI

γ measurement with ${\cal B}^{\pm} ightarrow {\cal D}(ightarrow h^{\pm} h'^{\pm} \pi^0) h^{\pm}$

arXiv:2112.10617

- Suppressed $B^- \to D(\pi^- K^+ \pi^0) K^-$ decay is observed for the first time with a significance of 7.8 σ
- Eleven CP observables $(A_h^{hh'\pi^0}, R_h^{\pm})$ are measured with world-best precision

$$A_{K/\pi}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to D(hh\pi^{0})K^{-}/\pi^{-}) - \Gamma(B^{+} \to D(hh\pi^{0})K^{+}/\pi^{+})}{\Gamma(B^{-} \to D(hh\pi^{0})K^{-}/\pi^{-}) + \Gamma(B^{+} \to D(hh\pi^{0})K^{+}/\pi^{+})}$$

•
$$\gamma = (56^{+24}_{-19})^{\circ}$$
, $\delta_B = (122^{+19}_{-23})^{\circ}$, $r_B = (9.3^{+1.0}_{-0.9}) imes 10^{-2}$

CPV search with $\Lambda_b^0 \rightarrow DpK^-$

PRD104(2021)112008

- Few studies of b-baryon decays to final states involving single open-charm meson exist, promising for measurements of CP violation
- First observation of $\Lambda_b^0 \to DpK^-$ with $D \to K^+\pi^-$

$$A_{CP} = \frac{\mathcal{B}(\Lambda_b^0 \to [K^+\pi^-]_D p K^-) - \mathcal{B}(\bar{\Lambda}_b^0 \to [K^-\pi^+]_D \bar{p} K^+)}{\mathcal{B}(\Lambda_b^0 \to [K^+\pi^-]_D p K^-) + \mathcal{B}(\bar{\Lambda}_b^0 \to [K^-\pi^+]_D \bar{p} K^+)}$$

 $\rightarrow A_{CP} = 0.12 \pm 0.09^{+0.02}_{-0.03} \text{ , } R = \frac{\mathcal{B}(\Lambda_D^0 \rightarrow [K^+\pi^-]_{DP}K^-)}{\mathcal{B}(\Lambda_D^0 \rightarrow [K^-\pi^+]_{DP}K^-)} = 7.1 \pm 0.8^{+0.4}_{-0.3}$

CPV search with $\Xi_b^- \rightarrow p K^- K^-$

- Large CP violation effects observed in three-body charmless B meson decays, $B \to h h h^{(\prime)}$ $(h = K, \pi)$
- No breaking of CP symmetry observed in any b-baryon yet
- First amplitude analysis of $\Xi_b^- \to pK^-K^-$ to measure A_{CP} of various resonances

Summary

- Numerous LHCb measurements dominate the world average for CKM angle and mixing parameters
 - \diamond First observation of mass difference in D^0 meson
 - $\diamond~$ First simultaneous combination of γ and charm mixing parameters
 - \diamond Most precise $B_s^0 ar{B}_s^0$ oscillation parameter Δm_s Nat.Phys.18(2022)1-5
 - Various CPV search in both charm and beauty decays
- A lot of more measurements are in good progress
- Run 3 is approaching! Exciting to see further improvement soon!

Stay tuned!

くぼう くほう くほう

Thanks for your attention!

<ロト (四) (三) (三) (三) (三)

γ measurement

$$\begin{split} \Gamma(B^{\pm} \to Dh^{\pm}) &\propto r_D^2 + r_B^2 + 2\kappa_D \kappa_B r_D r_B \cos(\delta_B + \delta_D \pm \gamma) \\ &- \alpha [(1 + r_B^2) \kappa_D r_D \cos\delta_D - \alpha (1 + r_D^2) \kappa_B r_B \cos(\delta_B \pm \gamma)] y \\ &+ \alpha [(1 - r_B^2) \kappa_D r_D \sin\delta_D - \alpha (1 - r_D^2) \kappa_B r_B \sin(\delta_B \pm \gamma)] x \end{split}$$

- x and y are charm mixing parameters
- r_D and δ_D is the ratio of magnitudes and strong phase difference of DCS and CF D decay amplitudes
- For quasi-GLW modes, $r_D = 1$, $\delta_D = 0$ and $\kappa_D = 2F_+^f 1$
- κ_D and κ_B are unity for two-body and account for a dilution of the interference term due to strong phase variation

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

LHCb combination with beauty and charm measurements

• Auxiliary parameters from other experiment

Decay	Parameters	Source	Ref.	Status since
				Ref. [17]
$B^{\pm} \rightarrow DK^{*\pm}$	$\kappa_{B^{\pm}}^{DK^{*\pm}}$	LHCb	[24]	As before
$B^0 \rightarrow DK^{*0}$	$\kappa_{B^0}^{DK^{*0}}$	LHCb	[45]	As before
$B^0 \rightarrow D^{\mp} \pi^{\pm}$	β	HFLAV	[11]	Updated
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} (\pi \pi)$	ϕ_s	HFLAV	[11]	Updated
$D \rightarrow h^+ h^- \pi^0$	$F^{+}_{\pi\pi\pi^{0}}$, $F^{+}_{K\pi\pi^{0}}$	CLEO-c	[46]	As before
$D \to \pi^+\pi^-\pi^+\pi^-$	$F_{4\pi}^{+}$	CLEO-c	[46]	As before
$D \rightarrow K^+ \pi^- \pi^0$	$r_D^{K\pi\pi^0}$, $\delta_D^{K\pi\pi^0}$, $\kappa_D^{K\pi\pi^0}$	CLEO-c+LHCb+BESIII	[47, 48, 49]	Updated
$D \rightarrow K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	$r_D^{K3\pi}$, $\delta_D^{K3\pi}$, $\kappa_D^{K3\pi}$	CLEO-c+LHCb+BESIII	[41, 47, 48, 49]	Updated
$D \to K^0_{\rm S} K^\pm \pi^\mp$	$r_{D_{-}}^{K_{\rm S}^0K\pi}$, $\delta_{D}^{K_{\rm S}^0K\pi}$, $\kappa_{D}^{K_{\rm S}^0K\pi}$	CLEO	[50]	As before
$D \rightarrow K^0_S K^{\pm} \pi^{\mp}$	$r_D^{K_S^0K\pi}$	LHCb	[51]	As before

Assumptions: negligible effect at the current precision

- Neutral kaon mixing
- ◊ CP violation in D-meson decays
- $\diamond~$ Strong phases in $D \to {\cal K}^0_{s} h^+ h^-$ decays
- Correlations of systematic uncertainties between input measurements

 γ measurement with $B^{\pm} \rightarrow D(\rightarrow h^{\pm} h'^{\pm} \pi^0) h^{\pm}$

arXiv:2112.10617

• Eleven observables with world-best precision

$$R_{ADS(h)}^{\mp} = \frac{\Gamma(B^{\mp} \to D(\pi^{\mp}K^{\pm}\pi^{0})h^{\mp})}{\Gamma(B^{\mp} \to D(K^{\mp}\pi^{\pm}\pi^{0}))h^{\mp}}, \ R_{K/\pi}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to D(hh\pi^{0})K^{-}/\pi^{-})}{\Gamma(B^{-} \to D(K^{-}\pi^{+}\pi^{0}))K^{-}/\pi^{-})}$$

$$A_{K/\pi}^{hh\pi^{0}} = \frac{\Gamma(B^{-} \to D(hh\pi^{0})K^{-}/\pi^{-}) - \Gamma(B^{+} \to D(hh\pi^{0})K^{+}/\pi^{+})}{\Gamma(B^{-} \to D(hh\pi^{0})K^{-}/\pi^{-}) + \Gamma(B^{+} \to D(hh\pi^{0})K^{+}/\pi^{+})}$$

$R^{KK\pi^0}$	=	1.021	\pm	0.079	\pm	0.005
$R^{\pi\pi\pi^0}$	=	0.902	±	0.041	\pm	0.004
$A_K^{K\pi\pi^0}$	=	-0.024	\pm	0.013	\pm	0.002
$A_K^{KK\pi^0}$	=	0.067	\pm	0.073	\pm	0.003
$A_K^{\pi\pi\pi^0}$	=	0.109	\pm	0.043	\pm	0.003
$A_{\pi}^{KK\pi^0}$	=	-0.001	\pm	0.019	\pm	0.002
$A_{\pi}^{\pi\pi\pi^0}$	=	0.001	\pm	0.010	\pm	0.002
\tilde{R}_K^+	=	0.0179	\pm	0.0024	\pm	0.0003
R_K^-	=	0.0085	\pm	0.0020	\pm	0.0004
R_{π}^+	=	0.00188	\pm	0.00027	\pm	0.00005
R_{π}^{-}	=	0.00227	\pm	0.00028	\pm	0.00004