Les Rencontres de Physique de la Vallée d'Aoste, 2022

Rare decays and LFNU at LHCb

vitalii.lisovskyi@cern.ch

See other talks by the LHCb speakers:

- <u>Classical and exotic spectroscopy</u> by Daniele Marangotto; this morning
- <u>CKM & CPV in charm & beauty</u> by Peilian Li; after my talk
- W mass and Z production by Menglin Xu; later today

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Vitalii Lisovskyi (TU Dortmund) on behalf of the LHCb Collaboration

Dedicated to my family trying to survive under bombs in Kharkiv, Ukraine

RARE DECAYS

► What is 'rare'?

what are other words for rare?

uncommon, unusual, scarce, exceptional, extraordinary, occasional, unique, singular, infrequent, sporadic

🔰 Thesaurus.plus

RARE DECAYS

► What is 'rare'?

uncommon, unusual, scarce, exceptional, extraordinary, occasional, unique, singular, infrequent, sporadic

🛍 Thesaurus.plus

- what are other words for rare?
- electroweak decay with small BF (\leq 10-4)
- (usually) penguin or box SM diagram
 - or: forbidden in SM (LFV, etc)
- dilepton or photon in the final state

🔰 Thesaurus.plus

🔰 Thesaurus.plus

RARE DECAYS

> In beauty sector, we study $b \rightarrow s\ell^+\ell^-$ or $b \rightarrow s\gamma$ processes:

 $\succ \ell^{\pm}$ is muon or electron. Or the tau.

- ► Flavour-changing neutral current, rare in the SM
 - Sensitive to non-SM contributions
 - Theoretically clean: can construct observables where QCD uncertainties cancel
- ► Crossing: $b\bar{s} \rightarrow \ell^+ \ell^-$ decay
 - very rare due to helicity suppression
- > In charm sector, $c \rightarrow u\ell^+\ell^-$ is the analog with up-type quarks
- state radiation, etc

► Can be studied in meson or baryon decays: $B \to K\ell^+\ell^-$, $B_s^0 \to \phi\ell^+\ell^-$, $\Lambda_h^0 \to \Lambda\ell^+\ell^-$...

> Other processes with dilepton emission: weak annihilation (W exchange), initial-

THE KEES EXPERIMENT IN 2010–2018 (RUNS 1–2)

► Collected about 9 fb⁻¹ integrated luminosity at 7-8-13 TeV pp collisions with >90% data-taking efficiency

► instantaneous luminosity ~ $3 \times 10^{32} cm^{-2} s^{-1}$

particle ID

$B^0_{(s)} \rightarrow \mu^+ \mu^-$

PRD105 (2022) 012010; PRL128 (2022) 041801

Run1+Run2 dataset

$$\rightarrow \mu^+ \mu^-) = (3.09^{+0.46+0.15}_{-0.43-0.11}) \times 10^{-9}$$

most precise to date, agrees with the SM

sensitivity affected by misidentified $B \rightarrow hh$

 $\mathscr{B}(B_s^0 \to \mu^+ \mu^- \gamma)_{m(\mu\mu) < 4.9 \,\text{GeV}} < 2.0 \times 10^{-9}$ first limit

Effective lifetime $\tau(B_s^0 \to \mu^+ \mu^-) = (2.07 \pm 0.29 \pm 0.03)$ ps closer to the lifetime of the heavy mass eigenstate, ~ 1.62 ps (in SM, only the heavy eigenstate can decay to two muons)

- > Even more suppressed in the SM: $\sim 10^{-10}$ for the B_c^0 mode and $\sim 10^{-12}$ for the B^0 mode
- Can be enhanced in models with BSM light resonances: $B_{(s)}^{0} \to a(\mu^{+}\mu^{-})a(\mu^{+}\mu^{-})$
- SM resonant contributions: veto around ϕ , J/ψ , $\psi(2S) \rightarrow \mu\mu$
 - ► $B_c^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(\mu^+\mu^-)$: normalisation channel
 - ► $B_{c}^{0} \rightarrow \phi(\mu^{+}\mu^{-})\phi(\mu^{+}\mu^{-})$ etc: negligible
 - $\succ B^0_{(s)} \rightarrow J/\psi(\mu^+\mu^-)\mu^+\mu^-$: search for the first time
 - ► W-exchange process
 - ► $\mathscr{B}(B_c^0 \to J/\psi\gamma) < 7.4 \times 10^{-6}$: LHCb, <u>PRD92 (2015) 112002</u>

Muon ID rejects various hadronic backgrounds.

arXiv: 2111.11339

Largest systematic uncertainty from the decay model assumptions.

Run1+Run2 dataset

Special case (inspired by <u>1902.10156</u>): $B_{(s)}^{0} \rightarrow a(\mu^{+}\mu^{-})a(\mu^{+}\mu^{-})$ where a is the light scalar of a mass ~ 1 GeV (remove the ϕ veto) $\mathscr{B}(B_{\rm s}^0 \to a(\mu^+\mu^-)a(\mu^+\mu^-)) < 5.8 \times 10^{-10}$

 $\mathscr{B}(B^0 \to a(\mu^+\mu^-)a(\mu^+\mu^-)) < 2.3 \times 10^{-10}$ @ 95% CL

No significant signal observed in any decay mode.

 $\mathscr{B}(B_s^0 \to J/\psi(\mu\mu)\mu\mu) < 2.6 \times 10^{-9} @ 95\% CL$

- Couplings to SM gauge bosons are identic $\frac{\Gamma(Z \to \mu^+ \mu^-)}{\Gamma(Z \to e^+ e^-)} = 1.0001 \pm 0.0024 \text{ or } \frac{\Gamma(V_{-1})}{\Gamma(V_{-1})}$
- ► Challenged in B decays: $b \to s\ell^+\ell^-$ and $b \to c\ell\nu$ transitions
- ► I will focus first on $b \to s\ell^+\ell^-$.

cal for
$$e/\mu/\tau$$
, e.g.
 $\frac{W \rightarrow \mu\nu}{W \rightarrow e\nu} = 0.996 \pm 0.008$
 $W \rightarrow e\nu$

- ► We measure: $R_K = 0.846^{+0.042+0.013}_{-0.039-0.012}$
- ► Similar deviations (less precise) in $\Lambda_b^0 \rightarrow pl$
- ► What about other initial/final states?

$$K\ell^+\ell^-$$
 and $B^0 \to K^{*0}\ell^+\ell^-$ decays

JHEP 05 (2020) 040 JHEP 08 (2017) 055

- Study the isospin partner process:

arXiv <u>2110.09501</u>

where only $0.045 < q^2 < 6 \, {\rm GeV}^2$ is considered for the rare mode

 $r_{I/m}^{-1}(K^{*+}) = 0.965 \pm 0.011(\text{stat}) \pm 0.034(\text{syst})$

 $R_{K^{*+}}^{-1} = 1.44^{+0.32}_{-0.29} (\text{stat.})^{+0.09}_{-0.06} (\text{syst.})$ $R_{K^{*+}} = 0.70^{+0.18}_{-0.13} (\text{stat.})^{+0.03}_{-0.04} (\text{syst.})$

 $\sim 1.4\sigma$ from unity

Both $R_{K_S^0}$ and $R_{K^{*+}}$ point to the same direction as the previous LHCb LFU results.

Colour-suppressed annihilation diagram, very small SM rate

 $\rightarrow h u^+ u^-$

 R^0

> Contribution from ω/ϕ mixing can be larger (*dd* component in ϕ), up to 10^{-10} level

NEW

- > Search for a B^0 peak in the left sideband of the B_s^0 ; profit from suppression of partially reconstructed $B_{\rm s}^0$ decays (isospin 0)
- \blacktriangleright Exclude dimuon mass regions corresponding to $\phi, J/\psi, \psi(2S) \rightarrow \mu\mu$
- > Dominant backgrounds: misidentification, combinatorial, semileptonic

► Measure
$$\mathscr{R} = \frac{\mathscr{B}(B^0 \to \phi \mu \mu)}{\mathscr{B}(B^0_s \to \phi \mu \mu)}$$

► Use $B_s^0 \to J/\psi\phi$ as a control mode

arXiv: 2201.10167

Run1+Run2 datase

No significant signal observed.

NEW

 $\rightarrow \phi \mu^+ \mu^-$

 B^0

Run 1

Assuming the phase-space decay model:

 $\Re < 4.4 \times 10^{-3}$ at 90 % CL

Absolute BF extrapolated to the full dimuon range

 $\mathscr{B} < 3.2 \times 10^{-9}$ at 90 % *CL*

compatible with the SM

 $D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^- \text{AND} D^0 \rightarrow K^+ K^- \mu^+ \mu^$ arXiv: 2111.03327 ► Rare $c \to u\ell^+\ell^-$ transition; dominated by intermediate resonances $(\rho, \omega, \phi, ...)$ ► Angular observables sensitive to BSM via interference of FCNC and resonances ► Tag by the $D^{*+} \to D^0 \pi^+$; validate with $D^0 \to K^- \pi^+ \mu^+ \mu^-$ and $D^0 \to K^- K^+$

Complete angular analysis & CP asymmetry measurement: "null test" of the SM

Run1+Run2 dataset

CP-averaged angular obs. in BSM scenarios

COMING BACK TO LFU

OBSERVATION OF $\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$

- > Anomalies in $b \rightarrow c\tau\nu$ transitions: $R_D, R_{D^*}, R_{J/\psi}$ above SM predictions
- form-factors
- Search for $\Lambda_h^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau$ with $\tau^- \to \pi^- \pi^+ \pi^- (\pi^0) \nu_\tau$
- ► Backgrounds:
 - $\blacktriangleright \Lambda_h^0 \to \Lambda_c^+ \pi \pi \pi X$ with pions from the Λ_h^0 vertex: suppressed requiring τ displacement:
 - ► Charm $\Lambda_h^0 \to \Lambda_c^+(D_s \to 3\pi X)$: use the dynamics of the 3-pion system: $a_1 \rightarrow \rho \pi$ for τ , vs other resonances for charm \rightarrow BDT selection
 - \blacktriangleright Combinatorial: parametrise using Λ_c sidebands and wrong-charge data
- the τ and q^2

arXiv: 2201.03497

Run1 dataset

► Baryonic decays offer complementary insight on a possible BSM mechanism: spin 1/2, diffe

> Reconstruct kinematics knowing the positions of the vertices: measure pseudo-decay-time of

21	
erent	
ν _τ π-	
π^+	
G. Wormser	
C	

OBSERVATION OF $\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$

- ► Fit to the BDT output, pseudo-decay-time of the τ , and the q^2
- > $349 \pm 40 \Lambda_h^0 \rightarrow \Lambda_c^+ \tau^- \bar{\nu}_{\tau}$ events, ~6 σ stat. significance
- ► Normalised to $\Lambda_b^0 \to \Lambda_c^+ \pi \pi \pi$: same final state, but poorly known BF: $0.614 \pm 0.094 \%$

$$K(\Lambda_c^+) = \frac{\mathscr{B}(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{\mathscr{B}(\Lambda_b^0 \to \Lambda_c^+ 3\pi)} = 2.46 \pm 0.27 \pm 0.40$$

► Using the DELPHI value of $\mathscr{B}(\Lambda_h^0 \to \Lambda_c^+ \mu \nu) = 6.2 \pm 1.4\%$ we get

 $R(\Lambda_c^+) = 0.242 \pm 0.026 (\text{stat}) \pm 0.040 (\text{syst}) \pm 0.059 (\text{ext} \cdot \text{BF})$

> vs SM prediction: 0.324 ± 0.004

Phys. Rev. D99 (2019) 055008

Poor knowledge of baryonic BFs is the main limitation!

Collecting harvest from our flavourful Run 1 + Run 2 datasets.

- Flavour anomalies keep intriguing us:
 - ► LFU and angular observables in $b \rightarrow s\ell^+\ell^-$ processes.
 - Charm becomes a strong player in the game!
- ► More results from LHCb are in the pipeline.

LHCb Upgrade I is in its crucial phase. > The detector is being assembled and commissioned as we speak now.

> Mapping the future of flavour physics with our planned Upgrade II.

> Baryons are another promising player, but more knowledge is needed on control channels.

BACKUP

 $B^0 \rightarrow K^* \mu^+ \mu^-$ ANGULAR ANALYSIS

Neutral and charged modes analysed, CP-averaged angular observables measured:

N PNI AR

- \blacktriangleright SM: $b \rightarrow s\gamma$ transition produces almost always a left-handed photon
- > Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ in 0.0008 < q^2 < 0.257 GeV²
 - region dominated by the virtual photon
 - > good resolution on the angle ϕ between the dielectron and $K\pi$ planes
- > World's best constraint on right-handed photon polarisation in $b \rightarrow s\gamma$

JHEP 12 (2020) 081

PHOTON POLARISATION

- > Now also with b-baryons: use $\Lambda_h^0 \to \Lambda \gamma$ decay
- > Spin 1/2 of initial and final baryon; weakly-decaying Λ ; ~unpolarised Lb
- ► Angular distribution $\frac{d\Gamma}{d\cos\theta_p} \sim 1 \alpha_{\gamma} \alpha_{\Lambda} \cos\theta_p$
- Fit to data: $\alpha_{\gamma} = 0.82 \pm 0.23 \pm 0.13$: compatible with SM

angle between the proton momentum in the Λ rest frame and the Λ momentum in the Λ_b rest frame

Challenges with electrons

Hardware trigger:

- efficient for final states **with muons** (~90 %) *
- a bottleneck for final states *without* muons * calorimeter has a high occupancy, tight thresholds
- * final states **with electrons** can be triggered in several ways:
- * Electrons emit a large amount of bremsstrahlung in interactions with the detector material
 - * If a photon is emitted *before the magnet*:
 - electron momentum measured *after* bremsstrahlung;
 - photon ends up in a *different* ECAL cell
 - dedicated procedure to search for these photons and correct the electron momenta *

JINST 14 (2019) P04013

COMING SOON: UPGRADE I (2022-...)

- without muons
 - The software trigger is much more flexible
 - > We still need to make sure our new software trigger is not introducing any similar bottleneck :) \blacktriangleright Even for final states with a dimuon, we can achieve better efficiency at low q².
- Complete rewrite of the reconstruction software (incl. electrons)
- Keeping the PID performance at a similar level
 - dedicated work on improvements of muon ID
- > The hope is to collect up to ~50 fb⁻¹ until the end of Run 4 -> ~5x current dataset
 - ► The yields should scale better than 5x
 - ► But the backgrounds scale too incl. pile-up
- ► For official projections on physics channels, check our <u>Physics case</u> for Upgrade II.

> With removal of the hardware trigger, we hope to get rid of the main bottleneck for final states

