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I N T R O D U C T I O N

Since ’03 more than 20 exotic hadron resonances 
have been discovered at  and hadron colliders.  

They go under the name of tetraquarks, pentaquarks, 
hadron molecules, hybrids. 

The problem about their composition is still debated, 
despite much progress has been made.  

The first one of the series, and the most studied, is 
the . 

e+e−

X(3872)



F E AT U R E S  O F  X(3872)

1.  has a mass precisely equal to  
2. It is an extremely narrow state  
3. Its strong decays in  and  violate isospin 
4. It is produced in prompt hadron collisions with very 

high cross section and hard  cuts 
5. It has been found in the  neutral charge state 

only, for the moment (?) 

X(3872) mD + mD*
≈ 1MeV

J/ψ ρ J/ψ ω

pT
X0

Some interpretations given over the years:  
Compact tetraquark,  hadron molecule (deuson),  

kinematical effect, hadrocharmonium, standard cahrmonium, 
Georgi’s unparticle!

DD*



D E U T E R O N S  &  ` D E U S O N S `

Is there a way to tell from data if the deuteron is 
elementary (compact six quarks) or composite (a  
molecule)?  

The effective range from   scattering amplitude is the  
discriminating observable [Weinberg ’65].  

For the  mesonic deuteron there is no way of 
performing  scatterings, but the resonance lineshape 
is well studied experimentally, and it encodes 

pn

np

X(3872)
DD̄*

r0 .



E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N

See Weinberg  Phys. Rev.  137, B672 (1965)

∑
m

|m⟩⟨m | + ∫ dα |α⟩⟨α | = 1

(Completeness relation)

H0 |α⟩ = E |α⟩

H0 |m⟩ = Em |m⟩
(Bare elementary particle discrete spectrum)

(Continuum spectrum)

Let  represent  pairs — c.o.m. at rest — with some relative  
momentum and with  (the deuteron). 

|α⟩ np
JP = 1+



The physical normalized  deuteron state is|d⟩

∫ dβ |Cβ |2 = 1 − Z

We assumed there is one elementary deuteron  
state , among the  states.|𝔡⟩ |m⟩

|d⟩⏟
Ψ

= Z |𝔡⟩

ΨQ

+ ∫ dβ Cβ |β⟩

ΨP

E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N



1) ; molecular case.                                            
Include a potential  binding  with  such that 
Z = 0

V n p

(H0 + Vnp) |d⟩ = (Mnp +
k2

2μ
+ Vnp) ΨP = (Mnp − B)

Md

ΨP

2)  ; would name it fully elementary deuteronZ = 1

H0 |d⟩ = H0 |𝔡⟩ = Md |d⟩

(deuteron at rest)

E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N :  T H E  T W O  E X T R E M E  C A S E S



(
H0 + Vnp HPQ

HQP H0 ) (
ΨP

ΨQ) = Md (
ΨP

ΨQ)
 and requires . 

The (fully) compact deuteron would not couple to !

Z → 1 ⇒ ΨP = 0 HPQ = 0
pn

 and requires . 
The deuteron is a molecule and simply there  
is no compact state to couple to.

Z → 0 ⇒ ΨQ = 0 HPQ = 0

E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N :  M I X I N G



… we have an elementary  for every 
value of  such that , the  
case being the only molecular case. 

𝔡
Z 0 < Z < 1 Z = 0

T H E  M E A N I N G  O F  Z

See Weinberg  Phys. Rev.  137, B672 (1965)

The case  is somewhat  singular and the 
statement made about an elementary deuteron is 

Z = 1

Is it possible then to extract  from data?Z



W E I N B E R G  &  D E U T E R O N  ( 1 9 6 5 )

Weinberg finds, for shallow bound states, a relation 
between  and a quantity known in low energy  
scattering theory as the effective range  (Schwinger)

Z
r0

r0 = −
Z

1 − Z
R + O(

1
mπ

)

R =
1

2mB

See Weinberg  Phys. Rev.  137, B672 (1965)

The “molecule” has   thus .  
What is the sign of the unknown corrections?

Z = 0 r0 = O(1/mπ)



B E T H E  ( ’ 4 9 ) ,  L A N D A U - S M O R O D I N S K Y  ( ’ 4 8 )

 r0 > 0

This is a general theorem, together with case by case analyses 
(see e.g. Blatt & Weisskopf).

This agrees with original Weinberg’s  molecule:Z = 0

“…an elementary deuteron would have ” 0 < Z < 1

“The true token that the deuteron is composite is an  small  
and positive rather than large and negative ” 

r0

“…an elementary deuteron would entail a large and negative ” r0

Esposito et al.  2108.11413

A  T H E O R E M  O N  S H A L L O W  B O U N D  S TAT E S  I N  Q M

(indeed r0 = + 1.74 fm for deuteron)

https://arxiv.org/abs/2108.11413


B E T H E - L A N D A U - S M O R O D I N S K Y  

r0 = −
Z

1 − Z
R + O(

1
mπ

)

Fix the sign of corrections by the exact relation

r0 = 2∫
∞

0
(ψ2

0 − u2
0) dr > 0

Where  is the solution to the S. equation with  and , 
whereas  is the solution to the free equation, with .

u0 V k = 0
ψ0 k = 0

For a proof see Esposito et al.  2108.11413

https://arxiv.org/abs/2108.11413


L H C B  ( 2 0 2 0 )

Allows to compute  the effective range  for the . 
This was dubbed as the “deuson”, a   mesonic 
molecule analogue of deuteron: a viable option 
iff  or  and .

r0 X(3872)
DD̄*

Z = 0 r0 > 0 O(1/mπ)

However we find  and r0 = − 5.43 fm |r0 | > 1/mπ !

“…an elementary deuteron would entail a large and negative ” r0

X X
D̄*

D

B ≈ 20 KeVEsposito et al.  2108.11413

arXiv:2005.13419

https://arxiv.org/abs/2108.11413


S C AT T E R I N G  A M P L I T U D E

f =
1

k cot δ(k) − ik
=

1

−1/a + 1
2 r0k2 − ik + …

f = −
1
2 g2

BW

E − mBW + i
2 g2

BWk

Compares with NR-BW formula

g2
BW = −

2
μr0

mBW =
1

aμr0
E =

k2

2μ
Esposito et al.  2108.11413

https://arxiv.org/abs/2108.11413


A F O R M U L A  F O R  r0

We find 

r0 = −
2

μgFlatte
−

μ′ 

2μ2δ
= − 5.34 fm

Where  is the reduced mass of the charged  
open charm pair,  of the neutral and  is

μ′ 

μ δ

δ = mD+ + mD*− − mD0 − mD̄*0

Esposito et al.  2108.11413

https://arxiv.org/abs/2108.11413


F I N I T E   Z ≳ 10 %

Esposito et al.  2108.11413

Measuring a finite, although ``small``    Z

⇒

the state is elementary — the only conclusion 
that can be safely formulated. 

The meson component is the `dressing` of  the state.

https://arxiv.org/abs/2108.11413


T H I S  C O N C L U S I O N S  I S  D E B AT E D .

This conclusion has been  disputed in a recent paper by  
C. Hanhart and collaborators 2110.07484. 

Their approach is: we measure a `small`  (even if for  and 
the new tetraquark this means ). That means 
that the state is essentially a molecule and marginally a 
compact quark state.

Z X
14% ÷ 30 %



E X C H A N G E  I N  Xπ−

 [ Esposito, Glioti, ADP, Rattazzi,  work in progress ]

−
4g2

f 2
π ∫

qiqj eiq⋅r

q2−μ2−iϵ
d3q = −

4g2

3f 2
π (δ3(r) + μ2 eiμr

r ) δij

Given that the potential is the FT of the propagator 
in the no-recoil approximation

to be contracted with polarizations e(α)
i (p1) ē(β)

j (k2)

μ2 = (mD* − mD)2 − m2
π ≈ 40 MeV



F I E L D  T H E O R Y  D E S C R I P T I O N

In the field theory description the  potential 
(which might have bound states) corresponds to 

δ3(r)

λ(ϕ†ϕ)2

where  are the fields for  particles, whereas  
corresponds to 

ϕ D0, D̄*0 HPQ

g(ψ†ϕ2 + (ϕ†)2ψ)
coupling to the elementary field  of  the .  ψ X

See T. Kinugawa and T. Hyodo  2112.00249

The negative  originates in the coupling to the (bare) field  
What is the role of the complex potential in ?

r0 ψ
DD̄*



F I E L D  T H E O R Y  D E S C R I P T I O N

There could also be another 4-linear term  
contributing to r0

however in the NR limit, dimensional analysis tells

ρ∇(ϕ†ϕ) ⋅ ∇(ϕ†ϕ)

g ∼
1

v
λ ∼ v ρ ∼ v3

with v → 0

See T. Kinugawa and T. Hyodo  2112.00249



D O E S  T H E   X  B E H AV E  L I K E  A  
D E U T E R O N ?  



D E U T E R O N  F R O M  A L I C E

Numbers of molecules as a function of multiplicity, 
computed with Boltzmann eq. in a coalescence model.

Esposito, Ferreiro, Pilloni, ADP, Salgado Eur. Phys. J. C 81 (2021) 669

ALICE: 1902.09290; 2003.03184



C O A L E S C E N C E  M O D E L

Esposito, Piccinini, Pilloni, ADP, J. Mod. Phys. 4 (2013) 1569-1573 

In final states of hadron collisions, the would-be molecule constituents have large  
relative momenta and, after an interaction with a GeV comovers, the prob. of falling  
within  is small. On the other hand a bound pair is most likely broken.

(k > Λ)

k < Λ

Guerrieri, Piccinini, Pilloni, ADP, Phys. Rev. D 90 (2014) 3, 034003



R E C E N T  I M P L I C AT I O N S

The coalescence picture predicts a behavior (green band)  
qualitatively different from data.

Esposito, Ferreiro, Pilloni, ADP, Salgado Eur. Phys. J. C 81 (2021) 669

LHCb:2009.06619



F R O M  M U LT I P L I C I T Y  T O  P T

Esposito, Guerrieri, Maiani, Piccinini, Pilloni, ADP, Riquer, Phys. Rev. D 92 (2015) 3, 034028



T H E  M O S T  R E C E N T  T E T R A Q U A R K S



D I Q U A R K - A N T I D I Q U A R K

X(1++) = [cq][c̄q̄] =
1

2
( |1,0⟩1 + |0,1⟩1) X(3872)

X(1+−) = [cq][c̄q̄] =
1

2
( |1,0⟩1 − |0,1⟩1) Z(3900)

X′ (1+−) = [cq][c̄q̄] =
1

2 2
( |1,1⟩1) Z(4020)

Here . What about strange quarks?q = u, d

Maiani, Piccinini, ADP, Riquer, Phys. Rev. D71, 014028 (2005); D89 114010 (2014); PLB778, 247 (2018)



T H E  E Q U A L  S PA C I N G  R U L E

K* ≈ (ϕ + ρ)/2

X(1++) = [cs][c̄s̄] X(4140)

Zcs
!= (X(4140) + X(3872))/2 = 4009 MeV

To first order of SU(3) flavor symmetry breaking we predict

Maiani, ADP, Riquer 
arXiv:2103.08331 

Sci. Bulletin 66, 1616 (2021)

Spacing = 275 MeV 
wrt 244 MeV for ϕ − ρ

[cs][c̄q̄] ∨ [cq][c̄s̄]



L H C B  ( 2 0 2 1 )

The  was observed by LHCb in the decayZcs(4003)

B+ → ϕ + Z+
cs(4003) → ϕ + K+ + J/ψ

At a mass very close to that given by the equal 
spacing rule



N E G AT I V E  C H A R G E  C O N J U G AT I O N

The diquark-antidiquark model requires the  
quasi-degeneracy  and 
we expect a similar multiplet for  

M(X(1++)) = M(Z(1+−))
1+−

Maiani, ADP, Riquer 
arXiv:2103.08331 

Sci. Bulletin 66, 1616 (2021)

BESIII recently observed e+e− → K+Z−
cs(3985) → K+(D*−

s D0 + D−
s D*0)

Spacing = 188 MeV 
wrt 200 MeV for f′ 2 − a2

[cs][c̄q̄] ∨ [cq][c̄s̄]

Prediction



C O N C L U S I O N S

• It is always mentioned that symmetry arguments  predict ‘too 
many’ states. However a particle zoo was identified — not 
expected in molecular models. Recently a new kind of tetraquark 

 has been reported.  

• In quark models the vicinity to threshold, from below and from 
above, is natural — not for molecules. 

• Vicinity to threshold does not necessarily mean loosely bound 
state of hadrons. 

• Independent measurements of  in  would be crucial 
to address the compositeness `vexata questio`.

[cc][qq′ ]

r0 X(3872)



C O N C L U S I O N S

X(3872) Z0±
c (3900) Z0±

c (4020) Z0±
b (10610) Z0±

b (10650)

D0D̄*0 D0D̄*0± D*0D̄*0± B0B̄*0± B*0B̄*0±

δ ≈ 0 +7.8 +6.7 +2.7 +1.8
(MeV)



A D D I T I O N A L  S L I D E S



Introduce projection operators  and ,  
 and  

P2 = P Q2 = Q
PQ = QP = 0, P + Q = 1 PΨ = ΨP, QΨ = ΨQ

P = (1 0
0 0) Q = (0 0

0 1)
Ψ = (

ΨP

ΨQ)

E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N



HΨ = MdΨ

H(ΨP + ΨQ) = HPΨP + HQΨQ

so that if  HPP ≡ PHP…

HPPΨP+HPQΨQ = MdΨP

HQPΨP + HQQΨQ = MdΨQ

E L E M E N TA R Y  A N D  C O M P O S I T E  
D E U T E R O N







P O I N T L I K E / C O M P O S I T E  PA R T I C L E S

If a pointlike particle is hit by another pointlike particle, the  
only effect is that its momentum will change and the  
strength of the interaction is insensitive to the exchanged  
momentum. 

However if the target is composite, a charge distribution  
in space may result, and the coupling is  dependent  
differently from the constant  coupling

k
e

δϕ(P) = ∫ d3k eik⋅r F(k)
k2

with  in place of  (which is obtained if ) F(k) e ρ(r) = eδ3(r)



Q U A N T U M  L O O P S  F O R M  FA C T O R S

The interaction strength 
depends only on  (cubic coupling)g

The interaction strength is a function  
of the exchanged momentum as  
a result of the loop. A composite system 
of virtual particles.

Particles are composite if their interaction with probes depends on 
momentum.  
Then, due to quantum fluctuations, all particles are composite! 
What is the meaning of elementary?



F O R M  FA C T O R S  &  C O M P O S I T E N E S S

δϕ(P) = ∫ d3r′ 

ρ(r′ )
4π |r − r′ |

= ∫ d3r′ 

1
4π |r − r′ | ∫ d3k eik⋅r′ F(k)

= ∫ d3k F(k)∫ d3r′ 

eik⋅r′ 

4π |r − r′ |
= ∫ d3k eik⋅r F(k)

k2

= ∫ d4x′ iΔ(x − x′ ) J(x′ ) with J(x′ ) ≡ ρ(r′ )

r

r′ 

r − r′ 

P

F(k) in place of e ⇒

the strength of the inter. depends on  k



T H E   M O L E C U L E  E X A M P L Eπ−p

n n
p

π−

See the “Lee-model” (’54) in Henley & Thirring, Elementary Quantum Field Theory, McGraw-Hill  
T.D.  Lee, Phys. Rev. 95, 1329 (1954)

|n, in⟩ = Z |n, bare⟩ + ∫k
Ψπ(k) |p π−(k), bare⟩

∫k
|Ψπ(k) |2 = 1 − Z

Same equations as Weinberg’s



T H E   M O L E C U L E  E X A M P L Eπ−p

Z−1 = 1 + (
Mp

Fπ
gA)

2
1

2π2 ∫
∞

0

k2

( 2mπ)2(B + k2

2(Mp + mπ) )2(1 + k2

M2
A
)4

dk

See the “Lee-model” (’54) in Henley & Thirring, Elementary Quantum Field Theory, McGraw-Hill  
T.D.  Lee, Phys. Rev. 95, 1329 (1954)

mπ=135 MeV
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Tune the mass of the neutron, i.e. tune B



N B :  T H E  D E R I VAT I O N  O F   R E Q U I R E S  AT  S O M E  
S T E P  T H AT   ( S T R I C T LY  VA L I D  I F   O R  ) .

r0(Z)
ℰ = − B Z = 0 HPQ = 0

|d⟩ = Z |𝔡⟩ + ∫ dβ Cβ |β⟩ with ∫ dβ |Cβ |2 = 1 − Z

⇒ ∫ dα |⟨α |d⟩ |2 = 1 − Z

then use 

(H0 + V) |d⟩ = ℰ |d⟩

⇒ ∫ dα
|⟨α |V |d⟩ |2

E(α) + B
= 1 − Z if ℰ = − B

From here obtain a formula for ; 
 (no cubic interaction!)

g ≡ |⟨α |V |d⟩ |
g = 0 if Z = 1



T H E  L A N D A U  C O U P L I N G  &  X → DDπ

g2 = 16π
2B
m

(ma + mb)2

1 − r0 2mB

20.0KeV

100.0KeV

1.0 KeV

20.0KeV

100.0KeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Γ [MeV]

ℬ
★
[%

]

r0=0 (solid) and r0=-5.34 fm (dashed)

ADP, 1505.03083

To compute Γ(X → DDπ)

https://arxiv.org/abs/1505.03083


F U R T H E R  I M P L I C AT I O N S

— BESIII observed e+e− → K+Z−
cs(3985) → K+(D*−

s D0 + D−
s D*0)

 should appear here tooZcs(4003)

— Viceversa  should be observed by LHCb Zcs(3985)

— A multiplet associated to  should also be observed  Z(4020)


