Classical and Exotic Spectroscopy at LHCb

Daniele Marangotto

INFN & Università degli Studi, Milano, Italy

La Thuile 2022 - Les Rencontres de Physique de la Vallee d'Aoste

Mar 9th 2022

Istituto Nazionale di Fisica Nucleare

Daniele Marangotto (INFN & UNIMI)

LHCb Spectroscopy

La Thuile 2022 1/17

The LHCb detector, Run 1 & 2

- Forward detector fully instrumented in $2 < \eta < 5$
- complementary coverage w.r.t. other LHC experiments
- Excellent tracking, momentum resolution and particle identification

JINST 3 (2008) S08005, IJMPA 30 (2015) 1530022

Spectroscopy at LHCb

- LHCb primarily designed to study heavy hadron decays
- 11000 LHCb-FIGURE-2021-001 A real new hadron 55 new hadrons at LHCb 10500 discoverv 70007 X(6900) machine! Q_b(6350)⁻ A.(6152)0 $\Omega_{h}(6340)$ Ep(6333)⁰ -= (6227)⁰ En(6227) ٨.(6146 Conventional B.(5970)+.0 Λ_b(5920)⁰ 6000 B(5840)+.0 A. (5912)0 Σ_h(6097) A.(6070)0 B.(6114) T-(6097) B.(6063) (baryons and lass [MeV/c²] 5000 X(4700) X(4685) X(4500) X(4630) Pc(4450) P.(4457)+ Exotic (like tetra/ X(4274) P.(4440) Z_{cs}(4220)* P.(4312) bä P.(4380) Z_{cs}(4000)⁺ 4000 $c\bar{c}(q\bar{q})$ X(3842) pentaguarks) ● T[±] cēcē Ξ_cc сā Q-(3119) Major contribution cāač D,'(3000)+.0 Ω_(3090) Ω_(3066) $D_{s1}^{+}(2860)^{+}$ E-(2939)⁰ X₁(2900) 3000 ٨-(2860)+ bqq D(3000)° X₀(2900) D.(2760)+ 0.(3050) caa E.(2923) to the hadron Ω (3000) D(2740)° D*(2760) ccaaa D₁₀(2590)⁴ D (2580) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 taxonomy Date of arXiv submission

-

-

mesons)

LHCb Spectroscopy

Motivation

- Systematic study of hadron production gives info on
- quark production mechanisms
- hadron formation from quarks (hadronisation)
- hadron internal structure
- Important measurements for quantum chromodynamics (QCD), especially at low-energy
- Discrimination among predictions obtained in different effective low energy QCD approaches
- Detailed study of hadron properties and decays possible at LHCb
- *e.g.* spin-parity assignments, polarisation, amplitude analyses

• Selection of recent LHCb results on classical and exotic spectroscopy

Conventional hadrons

- Λ⁺_c → pK⁻π⁺ amplitude analysis & Λ⁺_c polarisation measurement (NEW!)
- Observation of new excited \varXi^0_b states in $\Lambda^0_b {\cal K}^- \pi^+$
- Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays
- Study of charmonium contributions in ${\cal B}^+ o J\!/\!\psi\,\eta {\cal K}^+$

Exotics

- χ_{c1} (3872) production in *pp* collisions at $\sqrt{s} = 8, 13 \text{ TeV}$
- Observation of exotic tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$
- Evidence of new pentaquark structure in $B_s^0
 ightarrow p \bar{p} J/\psi$ decays

$\Lambda_c^+ ightarrow ho K^- \pi^+$ amplitude analysis & polarisation

LHCb-PAPER-2022-002, in preparation

- Full phase-space amplitude analysis of $\Lambda_c^+ \to \rho K^- \pi^+$ decays
- On 400k candidates selected from beauty hadron semileptonic decays
- Amplitude model and polarisation determined simultaneously AHEP (2020) 7463073
- Amplitude model separating resonance contribution in complicated phase space
- First Λ⁺_c polarisation measurement in semileptonic production
- Probe for baryon production + New Physics tests
- Amplitude model provides Λ_c^+ polarimeter
- Especially important for systems with smaller datasets

$\Lambda_c^+ \rightarrow \rho K^- \pi^+$ amplitude analysis

- Decay model written in terms of helicity amplitudes with general method for matching final particle spin states among different decay chains AHEP (2020) 6674595
- Built amplitude model, measured all parameters

Main contributions	Fit Fraction (%)	
$\Delta^{++}(1232)$ $K^{*}(892)$ $K^{*}(1430)$	$\begin{array}{c} 28.60 \pm 0.29 \pm 0.76 \pm 0.16 \\ 22.14 \pm 0.23 \pm 0.64 \pm 0.04 \\ 14.7 \pm 0.6 \pm 2.7 \pm 0.1 \end{array}$	

Uncertainties divided in statistical, amplitude model choice, systematic

$\Lambda_c^+ \rightarrow \rho K^- \pi^+$ amplitude analysis & polarisation

	Component	Value (%)
• Large polarisation precisely measured in Λ_c^+ helicity systems	P_x (lab) P_y (lab) P_z (lab)	$\begin{array}{c} 60.32\pm0.68\pm0.98\pm0.21\\ -0.41\pm0.61\pm0.16\pm0.07\\ -24.7\pm0.6\pm0.3\pm1.1 \end{array}$
 Normal <i>T</i>-odd polarisation (<i>P_y</i>) compatible with zero 	P_x (approx B) P_y (approx B) P_z (approx B)	$21.65 \pm 0.68 \pm 0.36 \pm 0.15 \\ 1.08 \pm 0.61 \pm 0.09 \pm 0.08 \\ -66.5 \pm 0.6 \pm 1.1 \pm 0.1$

- Established large contribution in $m(pK^-) \approx 2 \, {
 m GeV}$ region
- Described as single $J^P = 1/2^-$ state, with Breit-Wigner parameters $m = 1970 \pm 4 \pm 13$ MeV and $\Gamma = 148 \pm 7 \pm 18$ MeV
- Closest resonance reported by the PDG is $\Lambda(2000)$

Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays

Phys. Rev. D 104 (2021) L091102

- First observation of $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decay with full LHCb dataset
- Four excited Ω_c^0 baryons observed in $\Xi_c^+ K^-$ mass spectrum
- $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3065)^0$, $\Omega_c(3090)^0$
- Previously observed in prompt pp and e^+e^- production PRL 118 (2017) 182001, PRD 97 (2018) 051102)
- Measured mass and widths, with $\Gamma_{\Omega_c(3050)^0} < 1.6~{\rm MeV}$ at 95% CL
- $\Omega_c(3120)^0$ state missing, upper limit given

Observation of excited Ω_c^0 baryons in $\Omega_b^- \to \Xi_c^+ K^- \pi^-$ decays

Phys. Rev. D 104 (2021) L091102

- Threshold enhancement with significance $> 4\sigma$ seen, as in PRD 97 (2018) 051102
- Interpretation as radiative $\Omega_c(3065)^0$ decay excluded, more data needed to shed light on its nature
- Resonance spin analysed via helicity angle distributions
- $\frac{1}{2}, \frac{3}{2}, \frac{3}{2}, \frac{5}{2}$ assignment consistent with data
- $\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{3}{2}$ assignment rejected at 3.5 σ

Observation of new excited Ξ_b^0 states in $\Lambda_b^0 K^- \pi^+$

arXiv:2110.04497, submitted to PRL

- Run 2 (2015-18) LHCb data
- New $\Xi_b^0(6327)$, $\Xi_b^0(6333)$ states in $\Lambda_b^0 K^- \pi^+$ mass spectrum, not seen in $\Lambda_b^0 K^+ \pi^-$
- $m_{\Xi_b^0(6327)} = 6327.28^{+0.23}_{-0.21}(\textit{stat}) \pm 0.08(\textit{syst}) \pm 0.24(m_{A_b^0}) \, \text{MeV}$
- $m_{\Xi_b^0(6333)} = 6332.69^{+0.17}_{-0.18}(stat) \pm 0.03(syst) \pm 0.22(m_{A_b^0})$ MeV
- $\Delta m = 5.41^{+0.26}_{-0.27}(\textit{stat}) \pm 0.06(\textit{syst})\,\mathrm{MeV}$
- Natural widths consistent with zero
- $~\Gamma_{\varXi^0_b(6327)} < 2.20 (2.56) \, {\rm MeV}$ at 90(95)% CL
- $\Gamma_{\Xi^0_b(6333)} < 1.55(1.85)\,{
 m MeV}$ at 90(95)% CL
- Two-peak vs no peak significance $> 9\sigma$
- Consistent with doublet of 1D Ξ⁰_b resonances

LHCb Spectroscopy

Study of charmonium contributions in ${\it B}^+ o {\it J}\!/\psi\,\eta{\it K}^+$

arXiv:2202.04045, submitted to JHEP

- Studied $B^+ \to J/\psi \, \eta K^+$ with $J/\psi \to \mu^+\mu^-$, $\eta \to \gamma \gamma$ with full LHCb dataset
- Investigated J/ $\psi\,\eta$ mass spectrum for charmonia and charmonium-like states
- Evidence for $\psi_2(3823)$ and $\psi(4040)$ states
- Significance of 3.4 and 4.7 σ , resp.
- BF ratios w.r.t. $B^+ \rightarrow \psi(2S)(\rightarrow J/\psi \eta)K^+$
- $F_{\psi_2(3823)} = (5.95^{+3.38}_{-2.55})\%$
- $F_{\psi(4040)} = (40.6 \pm 11.2)\%$
- Other charmonium(-like) and hypothetical states not seen
- Upper limit for the C-odd partner of $\chi_{c1}(3872)$ is $F_{X_c'} < 1.9\%$

LHCb Spectroscopy

$\chi_{c1}(3872)$ production in pp collisions at $\sqrt{s}=8,13\,\mathrm{TeV}$

JHEP 01 (2022) 131

- Exotic $\chi_{c1}(3872)$ structure to be clarified
- Measured differential $pp \rightarrow \chi_{c1}(3872)X$ cross-section ratio over $\psi(2S)$ production
- Complements multiplicity-dependent production studied by LHCb PRL 126 (2021) 092001
- In prompt *pp* collisions and from beauty decays (nonprompt)
- 2012 (8 TeV) and 2015-18 data (13 TeV)
- Visible increase of prompt ratio at high p_T, flat behaviour for nonprompt

Observation of exotic tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$

arXiv:2109.01038; arXiv:2109.01056

- Very narrow state observed in $D^0 D^0 \pi^+$ mass spectrum, at \approx 3875 MeV
- Peak significance of 21.7 σ with full LHCb dataset
- Fit with 2-body Rel. Breit-Wigner
- First double charm tetraquark observed, T_{cc}^+
- minimal quark content ccūd
- $m_{T_{cc}^+} m_{D^{*+}} m_{D^0} = -273 \pm 61 \pm 5^{+11}_{-14} \,\mathrm{keV}$
- $\Gamma_{\mathcal{T}^+_{cc}} = 410 \pm 65 \pm 43^{+18}_{-38}\,\mathrm{keV}$
- Isoscalar $J^P = 1^+$ ground state
- Close to $D^{*+}D^0$ threshold
- Significance for below-threshold peak at 4.3σ

Observation of exotic tetraquark T_{cc}^+ in $D^0 D^0 \pi^+$

arXiv:2109.01038; arXiv:2109.01056

- Properties of new resonance studied using unitarized 3-body BW model
- Larger tail above D*+D⁰ threshold w.r.t 2-Body RBW
- Significance for below-threshold peak at 9σ
- Measured pole parameters, scattering length *a* and coupling constant |*g*|
- $\delta m_{pole} = -360 \pm 40^{+4}_{-0} \, \mathrm{keV}$
- $\Gamma_{\textit{pole}} = 48 \pm 2^{+0}_{-14} \, \rm keV$
- $a = -360 \pm 40^{+4}_{-0} \, \mathrm{keV}$
- $|g| > 5.1(4.3) \,\mathrm{GeV}$ at 90(95)% CL
- No hint of possible T_{cc}^{0} , T_{cc}^{++} isospin partners
- Observed T⁺_{cc} consistent with singlet state

Evidence of new structures in $B_s^0 ightarrow \rho \bar{p} J/\psi$ decays

Phys. Rev. Lett. 128 (2022) 062001

- Amplitude analysis of flavour-untagged $B^0_s o p \bar{p} J/\psi$ decays with full LHCb dataset
- Evidence for new structure in J/ ψ p, J/ ψ \bar{p} mass spectra
- $m = 4337^{+7}_{-4} \pm 2 \,\mathrm{MeV}$
- $\Gamma = 29^{+26}_{-12} \pm 14\,{\rm MeV}$
- Pentaquark $c\bar{c}uud$ candidate decaying to $P_c^+ \rightarrow J/\psi p$, $P_c^- \rightarrow J/\psi \bar{p}$
- Significance 3.1 3.7 σ depending on assigned spin-parity
- J^P indistinguishable with available data
- Differing from P_c states observed in $\Lambda_b^0 \rightarrow J/\psi \, p K^-$

Conclusions

- Presented a selection of the latest LHCb results on classical and exotic spectroscopy
- $\Lambda_c^+ \to p K^- \pi^+$ amplitude analysis and Λ_c^+ polarisation measurement
- Observation of new excited Ω_c^0 and Ξ_b^0 baryons
- Study of charmonium and $\chi_{c1}(3872)$ contributions
- New tetra/pentaquark states T_{cc}^+/P_c^+ (4337)
- Latest findings extend the striking series of hadrons discovered at LHCb
- A wealth of information available for theory community
- The trend is increasing... new hadrons ready for the next harvest?

