Direct Search for the Higgs Boson to Charm Quarks Coupling at ATLAS

António Jacques Costa on behalf of the ATLAS Collaboration

La Thuile 2022

10th March 2022

Motivation

- Couplings of Higgs field to quarks and leptons Yukawa couplings are a potential source of the fermion masses
- Interaction so far only observed for 3rd generation of fermions (top, bottom and tau) and evidence found for coupling with muons
- Yukawa couplings don't explain the large disparities between the fermion masses
- There is no guarantee all Higgs fermion couplings behave in a similar way
- Of utmost importance to measure all Higgs couplings to fermions!
- Probability of Higgs boson decays to charm quarks of 3.9% in Standard Model
- Standard Model Higgs Yukawa coupling to charm quarks is rather small $(y_c = \sqrt{2} m_c (\mu=m_H) / \nu \simeq 0.2 \times y_b)$
- Susceptible to **significant modifications** in some **new physics** scenarios⁺ (e.g. two Higgs doublet models)
- One of largest contributions to Γ_H (by SM expectations) yet to be established experimentally

VH (H \rightarrow c \bar{c}) Searches

- Built around the use of **c-jet tagging algorithms**
- Targeting VH production (V = W, Z)
 - W/Z boson decays into leptons allow for a **convenient trigger strategy**
 - Suppression of multi-jet backgrounds
 - Enhanced Signal over Background ratio w.r.t to inclusive Higgs production
- ATLAS Early Run 2 with integrated luminosity of L = 36.1 fb^{-1} (PRL 120 (2018) 211802)
 - $Z(\rightarrow II)H(\rightarrow c\bar{c})$ production targeted
 - Observed (expected) upper limit μ_{ZH} (H $\rightarrow c\overline{c}$) at 95% C.L. of 110 (150⁺⁸⁰₋₄₀) × SM
- ATLAS Full Run 2 analysis (arXiv:2201.11428v1)
 - Integrated luminosity of L = 139 fb⁻¹
 - $Z(\rightarrow vv)H(\rightarrow c\bar{c}), W(\rightarrow lv)H(\rightarrow c\bar{c}), Z(\rightarrow ll)H(\rightarrow c\bar{c})$ productions targeted
 - Combination of VH (H \rightarrow cc̄) and VH (H \rightarrow bb̄) analyses for improved constraints on coupling modifiers

(CÉRN)
N P
CERN-EP-2021-25 28th January 202
LAS detector
LAS detector
LAS detector

Equivalent CMS studies: CMS Run 2 with L = 35.9 fb⁻¹ (<u>JHEP 2003 (2020) 131</u>), CMS Full Run 2 with L = 138 fb⁻¹ (<u>CMS-PAS-HIG-21-008</u>)

Flavour Tagging Design

Dedicated working point and optimised for the analysis built from two components

- DL1 (deep neural network) algorithm: c-tagger
- MV2c10 (boosted decision tree): b-tagger, for b-jets vetoes, using the 70% b-jet efficiency working point
- 'c-tagged' jet must pass both conditions, i.e, have a c-tag with a b-veto
- Additional jets to the two forming the Higgs candidate have a **b-tag veto**
- Signal regions orthogonal to VH (H \rightarrow bb) analysis (allowing for combination)

Efficiencies

• Signal more sensitive to rejection of light jets than b-jets

Jet Flavour	Efficiency (Rejection)
c-jets	27% (-)
b-jets	8% (13)
Light flavour jets	1.6% (63)

• Efficiency in data measured relative to simulation as a "scale factor" with a typical precision of 5 - 10% and generally consistent with unity

Analysis Strategy

Event Categorisation

• p_T^V is p_T of associated vector boson produced

Channel	Tag categories	nJets	p_T^V
0 lepton		2 and 2 jots	m^{V} > 150 CoV
1 lepton	1 and 2 c tags	2 and 2 a tags	$p_T > 150 \text{ GeV}$
2 lepton	I and Z C-tags	2 and 3+ jets	75 < p_T^V < 150 GeV p_T^V > 150 GeV

Higgs candidate selection

- Higgs candidate: two highest p_T jets
- c-tag with b-veto on two
 Higgs candidate jets
- b-veto on additional jets
- ΔR(cc) selection optimised for VH(cc̄) sensitivity

Two muons with a di-lepton invariant mass of 92 GeV. The reconstructed Z boson has a transverse momentum of 150 GeV. The Higgs boson candidate is reconstructed from two charm-tagged R=0.4 jets. The leading and sub-leading jets have transverse momenta of 123 GeV and 71 GeV respectively. The Higgs boson candidate has a reconstructed invariant mass of 123 GeV.

Signal and Control Regions (SR & CR)

Control Regions

- High $\Delta R \, CR Constrain modelling of W/Z+jets:$ Events with $\Delta R_{ij} > SR$ cuts and $\Delta R_{ij} < 2.5$
- Top CRs Constrain modelling of top processes: inverted b-tag veto in 1 c-tag, 3 jets events in 0L/1L; $e^{\pm}\mu^{\mp}$ events w/ 1 c-tag in 2L
- O-tag CR Constrain normalisations of W/Z+jets light flavour component: in 1/2L events

Fit Strategy

- Simultaneous binned likelihood fit to m_{cc} distributions of the analysis categories (16 SRs and 28 CRs)
- Measuring simultaneously following signal strengths:
 - $\mu_{VH}(H \to c\bar{c})$ • $\mu_{VW}(W \to cq) \to \text{validation of 1 c-tag category}$ • $\mu_{VZ}(Z \to c\bar{c}) \to \text{validation of 2 c-tag category}$ • $\mu_{VZ}(Z \to c\bar{c}) \to \text{validation of 2 c-tag category}$
- Nuisance Parameters (NPs)
 - Full set of detector systematics: flavour tagging, jets, leptons, MET, luminosity, pile-up
 - Full set of modelling uncertainties: Uncertainties on cross-section and acceptance, flavour or process composition, inter-category relative normalisation and m_{cc} shape
 - Statistical uncertainties from simulation samples size
- Normalisations of main backgrounds obtained from data: Z+jets, W+jets, top processes (with/without b-quark in 0 and 1 lepton channels and separate parameter in 2 lepton)

Breakdown of uncertainties

VH (H \rightarrow c \bar{c})

- Statistical and systematic uncertainties of the same magnitude
- Main systematic uncertainties
 - Background modelling: V+jets and top processes
 - Statistical uncertainty from limited size of MC samples
 - Truth-flavour tagging (TT): Tagging (in-)efficiency of the Higgs candidate jets as event weights
 - Corrections of TT yields to match Direct Tagging (DT)
 - ΔR dependent correction applied for V+jets
 - Small remaining DT/TT non-closure:
 - Additional norm-only systematic uncertainty
 - Use of truth-tagging represents nevertheless 10% improvement on limit w.r.t direct tagging

VW (W \rightarrow cq) and VZ (Z \rightarrow cc̄)

- Sensitivity limited by systematic uncertainties
- Similar hierarchy of contributions to VH (H \rightarrow cc̄)

Source of uncertainty	$\mu_{VH(c\bar{c})}$	$\mu_{VW(cq)}$	$\mu_{VZ(c\bar{c})}$	
Total	15.3	0.24	0.48	
Statistical		10.0	0.11	0.32
Systematic		11.5	0.21	0.36
Statistical uncertainties				
Signal normalisation		7.8	0.05	0.23
Other normalisations		5.1	0.09	0.22
Theoretical and modellin	g uncertainties			
$VH(\rightarrow c\bar{c})$		2.1	< 0.01	0.01
Z + jets		7.0	0.05	0.17
Top quark		3.9	0.13	0.09
W+ jets		3.0	0.05	0.11
Diboson		1.0	0.09	0.12
$VH(\rightarrow b\bar{b})$	0.8	< 0.01	0.01	
Multi-jet	1.0	0.03	0.02	
Simulation samples size	4.2	0.09	0.13	
Experimental uncertainti	es			
Jets		2.8	0.06	0.13
Leptons		0.5	0.01	0.01
$E_{ ext{T}}^{ ext{miss}}$		0.2	0.01	0.01
Pile-up and luminosity	0.3	0.01	0.01	
	<i>c</i> -jets	1.6	0.05	0.16
Flavour tagging	<i>b</i> -jets	1.1	0.01	0.03
	light-jets	0.4	0.01	0.06
	au-jets	0.3	0.01	0.04
Truth Assaura to a star	ΔR correction	3.3	0.03	0.10
mun-navour tagging	Residual non-closure	1.7	0.03	0.10

Run 2 Limit and κ_c Interpretation

• Parametrisation of $\mu(\kappa_c)$: $\mu = \frac{\kappa_c^2}{(1-BR_{Hcc})+BR_{Hcc}*\kappa_c^2}$

Combination with VH (H \rightarrow b \overline{b})

- VH (H \rightarrow bb) and VH (H \rightarrow cc) searches with similar analysis features
- Orthogonal signal regions between the two make combination possible
- Possibility to measure the ratio of coupling modifiers κ_c/κ_b , with no assumptions on the Higgs width
- Common experimental systematic uncertainties correlated between the two analyses
- Exceptions for flavour tagging and background modelling uncertainties (different implementations or parametrisations)

 $|\kappa_c/\kappa_b|$ ratio constraints Higgs boson's coupling to charm quarks to be weaker than its coupling to bottom quarks

Prospects for the HL-LHC

- Extrapolation of Run 2 analyses to HL-LHC scenario: $\sqrt{s} =$ 14 TeV, 3000 fb⁻¹
- qq \rightarrow VH (gg \rightarrow ZH) signal scaled by 1.10 (1.18), $t\bar{t}$ and gg \rightarrow ZZ scaled by 1.16, qq \rightarrow VV and V+jets by 1.10
- Flavour tagging (except light-jets in VH (H $ightarrow car{c}$)), theory and background uncertainties scaled by 1/2

• Leading uncertainties on results from Z+jets modelling and flavour tagging

Prospects for the HL-LHC: VH, $H \rightarrow c\bar{c}/b\bar{b}$ combination

• Expected constraint of $|\kappa_c/\kappa_b| \le 2.7$ at 95% CL

- Run 2 analyses extrapolated to HL-LHC are not sensitive enough to test SM predictions
- Improvements such as changes on the analysis design (e.g to a MVA-based VH, H → cc̄ analysis) and better flavour tagging performance not considered in extrapolation → Plenty of room to improve!

Summary

- Observed μ_{VHcc} limit of 26 \times SM
- Observed constraint of $|\kappa_c| \le 8.5$ at 95% CL
- Observed constraint of $|\kappa_c/\kappa_b| \le 4.5$ at 95% CL \leftarrow Higgs boson coupling to charm quarks weaker than coupling to bottom quarks
- Observed significances of 3.8 σ and 2.6 σ for VW (W \rightarrow cs/cd) and VZ (Z \rightarrow cc) production, respectively
- SM sensitivity out of reach with HL-LHC extrapolation of current VH ($H \rightarrow c\bar{c}$) and VH ($H \rightarrow b\bar{b}$) analyses \rightarrow innovation needed!

 $^{^+}$ Limits for individual channels from fit with VH(cc) POI decorrelated in channels

Backup

Candidate event for the process $ZH \rightarrow vvc\bar{c}$ (Run 350440, Event 1105654304). The missing transverse energy is identified by a white dashed line and it has a magnitude of 155 GeV. The Higgs boson candidate is reconstructed from two charm-tagged R=0.4 jets (blue cones), which have associated energy deposits in both the electromagnetic (green) and hadronic (yellow) calorimeters. The leading and sub-leading jets have transverse momenta of 176 GeV and 22 GeV respectively. The Higgs boson candidate has a reconstructed invariant mass of 125 GeV.

Candidate event for the process WH \rightarrow evcc (Run 329964, Event 500775771). An electron can be seen as a blue track with large associated energy deposits in the electromagnetic calorimeter (green). The missing transverse energy is identified by a white dashed line and it has a magnitude of 116 GeV; the transverse momentum of the electron-ETmiss system is 151 GeV. The reconstructed transverse mass of the W boson is 72 GeV. The Higgs boson candidate is reconstructed from two charm-tagged R=0.4 jets (blue cones), which have associated energy deposits in both the electromagnetic (green) and hadronic (yellow) calorimeters. The leading and sub-leading jets have transverse momenta of 111 GeV and 81 GeV respectively. The Higgs boson candidate has a reconstructed invariant mass of 124 GeV.

Candidate event for the process $ZH \rightarrow \mu\mu c\bar{c}$ (Run 309892, Event 4866214607). Two muons, which have a di-lepton invariant mass of 92 GeV, are shown as red tracks producing hits (green) in the endcap muon chambers. The reconstructed Z boson has a transverse momentum of 150 GeV. The Higgs boson candidate is reconstructed from two charm-tagged R=0.4 jets (blue cones), which have associated energy deposits in both the electromagnetic (green) and hadronic (yellow) calorimeters. The leading and sub-leading jets have transverse momenta of 123 GeV and 71 GeV respectively. The Higgs boson candidate has a reconstructed invariant mass of 123 GeV.

Calibration of c-tagging algorithm

- c-tagging efficiencies in simulation are corrected to reflect the c-tagging efficiency in data
- Scale factors (SF) derived from dedicated data-driven study for each flavour, with typical precision of 5-10%

Event Selection

Common Selections			
Central jets Signal jet p _T c-jets b-jets Jets	≥ 2 ≥ 1 signal jet with $p_T > 45$ GeV 1 or 2 <i>c</i> -tagged signal jets No <i>b</i> -tagged non-signal jets 2, 3 (0- and 1-lepton), 2, ≥ 3 (2-lepton)		
$p_{\rm T}^V$ regions	75–150 GeV (2-lepton) > 150 GeV		
ΔR (jet 1, jet 2)	$\begin{array}{l} 75 < p_{\rm T}^V < 150 \; {\rm GeV} \colon \Delta R \leq 2.3 \\ 150 < p_{\rm T}^V < 250 \; {\rm GeV} \colon \Delta R \leq 1.6 \\ p_{\rm T}^V > 250 \; {\rm GeV} \colon \Delta R \leq 1.2 \end{array}$		
	0 Lepton		
$\begin{array}{c} \text{Trigger} \\ \text{Leptons} \\ E_{\text{T}}^{\text{miss}} \\ \hline p_{\text{T}}^{\text{miss}} \\ \hline H_{\text{T}} \\ \hline \\ \hline \\ \text{min} \Delta \phi(E_{\text{T}}^{\text{miss}}, \mathbf{jet}) \\ \Delta \phi(E_{\text{T}}^{\text{miss}}, H) \\ \Delta \phi(\mathbf{jet1}, \mathbf{jet2}) \\ \Delta \phi(E_{\text{T}}^{\text{miss}}, p_{\text{T}}^{\text{miss}}) \end{array}$	E_{T}^{miss} 0 <i>loose</i> leptons > 150 GeV > 30 GeV > 120 GeV (2 jets), > 150 GeV (3 jets) > 20° (2 jets), > 30° (3 jets) > 120° < 140° < 90° 1 Lepton		
Trigger e sub-channel: single electron μ sub-channel: $E_{\rm T}^{\rm miss}$ Leptons1 tight lepton and no additional loose lepton			
$E_{\rm T}^{\rm miss}$ $m_{\rm T}^{\rm W}$	> 30 GeV (<i>e</i> sub-channel) < 120 GeV		
-	2 Lepton		
Trigger Leptons m ₁₁	single lepton 2 <i>loose</i> leptons Same flavour, opposite-charge for $\mu\mu$ $81 < m_{ll} < 101$ GeV		

• ΔR(cc) selection re-optimised for VH(cc) sensitivity

- O-lepton: multi-jet and non-collisional background rejection
- 1 lepton: reduction of multi-jet contamination
 - tighter lepton selection
 - m_T^W cut

Jet energy corrections

- Muon-in-jet correction applied in all channels (for jets w/ muons found within a p_T -dependent cone around the jet axis)
- Improved m(cc) resolution: \sim 5%
- Smaller improvement w.r.t VH (H → bb̄) due to less semi-leptonic decays

O Lepton Channel Signal Regions

Event Selection

- Missing transverse energy $E_T^{miss} > 150 \text{ GeV}$
- No leptons with $p_T > 7$ GeV and satisfying loose criteria
- Angular cuts built with E_T^{miss} and hadronic related variables for **multi-jet suppression**
- Additional cuts for non-collisional background rejection

Four Signal Regions

1 c-tag, 2 jets	1 c-tag, 3 jets
2 c-tags, 2 jets	2 c-tags, 3 jets

1 Lepton Channel Signal Regions

Event Selection

- One electron or muon with $p_T > 27$ (25) GeV and satisfying tight (medium) criteria
- No additional leptons with $p_T > 7$ GeV and satisfying loose criteria
- $m_T^W < 120 \text{ GeV}$
- $E_T^{miss} > 30$ (electron sub-channel only)

Four Signal Regions			
1 c-tag, 2 jets	1 c-tag, 3 jets		
2 c-tags, 2 jets	2 c-tags, 3 jets		

2 Lepton Channel Signal Regions

Event Selection

- Two electrons or muons with $p_T > 7$ GeV and satisfying loose criteria
- One of the leptons must also have $p_T > 27~{
 m GeV}$
- Consistency with Z boson mass: $81 < m_{ll} < 101$ GeV

Eight Signal Regions

$75 < p_T^Z < 15$	0 GeV – low p_T^Z	$p_T^Z > 150~{ m G}$	eV – high p_T^Z
1 c-tag, 2 jets	1 c-tag, ≥3 jets	1 c-tag, 2 jets	1 c-tag, ≥3 jets
2 c-tags, 2 jets	2 c-tags, ≥3 jets	2 c-tags, 2 jets	2 c-tags, ≥3 jets

Main backgrounds

Z+jets

Subdominant backgrounds

 $\vee \mathbb{W}$ and $\vee \mathbb{Z}$ production

Top quark processes in low p_T^Z regions

Control Regions

Top CRs

- Constraining modelling of top quark processes
- 0 and 1 lepton channels: inverted b-tag veto in 1 c-tag, 3 jets events, ≥ 1 b-tag in these events
- 2 lepton channel: $e^{\pm}\mu^{\mp}$ events with 1 c-tag

- Constraining modelling of W/Z+jets
- Events with ΔR_{ii} > SR cuts and ΔR_{ii} < 2.5
- 0, 1 and 2 lepton channels

0 c-tag CRs – Constraining normalisations of W/Z+jets light flavour component

• 1 and 2 lepton channels: events where both of the two main jets fail the c-tag requirement and additional jets are b-vetoed

Signal and Background Modelling

- Signal and background processes modelled using simulation (except multi-jet templates from enriched control region)
- Same samples used for the VH (H \rightarrow bb) analysis
- MC statistical uncertainties mitigated through truth tagging
 - Apply tagging (in-)efficiency of the Higgs candidate jets as event weights
- Theory uncertainties for VH (H \rightarrow cc̄) cross-section and branching fraction

Process	ME generator	ME PDF	PS and hadronisation	Tune	Cross-section order
$\begin{array}{c} qq \rightarrow VH \\ (H \rightarrow c\bar{c}/b\bar{b}) \end{array}$	Powheg Box v2 + GoSam + MiNLO	NNPDF3.0nlo	Рутніа 8.212	AZNLO	NNLO(QCD) +NLO(EW)
$gg \to ZH \\ (H \to c\bar{c}/b\bar{b})$	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.212	AZNLO	NLO+NLL
tī	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	NNLO +NNLL
<i>t/s</i> -channel single top	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	NLO
<i>Wt</i> -channel single top	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.230	A14	Approx. NNLO
V+jets	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	Default	NNLO
$qq \rightarrow VV$	Sherpa 2.2.1	NNPDF3.0nnlo	Sherpa 2.2.1	Default	NLO
$gg \rightarrow VV$	Sherpa 2.2.2	NNPDF3.0nnlo	Sherpa 2.2.2	Default	NLO

- Modelling systematic uncertainties assessed using alternative generators and scale variations in nominal generators
 - Normalisation uncertainties: relative difference on total yield predictions
 - Applied to subdominant processes (diboson, VH): phase space acceptance
 - Acceptance ratios: relative differences in predictions for p_T^V and nJet categories
 - Flavour composition ratios: different flavour/processes predictions per categories
 - Channel extrapolations: different predictions per channel
 - SR/CR extrapolation: different predictions per region
 - m_{cc} shape uncertainties: account for differences in binned m_{cc} distribution prediction

Parametrisation of κ_c

Summary of κ_b vs. κ_c constraints (ATL-PHYS-PUB-2022-002)

Parametrisations of κ parameters (ATLAS-CONF-2021-053)

Table 6: Parametrisations of Higgs boson production cross sections σ_i , partial decay widths Γ^f , and the total width Γ_H , normalised to their SM values, as functions of the coupling-strength modifiers κ . The effect of invisible and undetected decays is not considered in the expression for Γ_H . For effective κ parameters associated with loop processes, the resolved scaling in terms of the modifications of the Higgs boson couplings to the fundamental SM particles is given. The coefficients are derived following the methodology in Ref. [37, 41].

Production	Loons	Main	Effective	Resolved modifier	
cross section	Loops	interference	modifier	Resolved mounter	
$\sigma(ggF)$	\checkmark	t-b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$	
$\sigma(\text{VBF})$	-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$	
$\sigma(qq/qg \to ZH)$	-	-	-	κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	t–Z	$\kappa_{(ggZH)}$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$ $- 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$	
$\sigma(WH)$	-	-	-	κ_W^2	
$\sigma(t\bar{t}H)$	-	-	-	κ_t^2	
$\sigma(tHW)$	-	t-W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$	
$\sigma(tHq)$	-	t-W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$	
$\sigma(b\bar{b}H)$	-	-	-	κ_b^2	
Partial decay width					
Γ^{bb}	-	-	-	κ_{h}^{2}	
Γ^{WW}	-	-	-	κ_W^2	
Γ^{gg}	\checkmark	t-b	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$	
$\Gamma^{\tau\tau}$	-	-	-	κ_{τ}^2	
Γ^{ZZ}	-	-	-	κ_Z^2	
Γ^{cc}	-	-	-	κ_c^2 (= κ_t^2)	
				$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$	
$\Gamma^{\gamma\gamma}$	\checkmark	t-W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$	
				$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$	
$\Gamma^{Z\gamma}$	\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$	
Γ^{ss}	-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$	
$\Gamma^{\mu\mu}$	-	-	-	κ_{μ}^2	
Total width $(B_{i.} = B_{i.})$	Total width $(B_{i} = B_{u} = 0)$				
				$0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2$	
Γ			"2	+0.063 κ_{τ}^2 + 0.026 κ_Z^2 + 0.029 κ_c^2	
1 <i>H</i>	~	-	ĸ _H	+0.0023 κ_{γ}^2 + 0.0015 $\kappa_{(Z\gamma)}^2$	
5				+0.0004 κ_s^2 + 0.00022 κ_{μ}^2	

- Invisible decays: decays which are identified through a E_T^{miss} signature in the analyses. In the SM, the branching fraction of invisible decays is predicted to be 0.1%, exclusively from the process. The BSM contribution to this branching fraction is denoted as B_i .
- Undetected decays: decays to which none of the analyses included in this combination are sensitive, such as decays to light quarks which have not yet been resolved, or undetected BSM particles without a sizable E_T^{miss} in the final state. For the former, the SM contribution of these undetected decays is already included in Γ^{SM} , and amounts to 11%, mainly driven by the decays to gluon pairs. The BSM contribution to the undetected branching fraction is denoted as B_u . Note that deviations of the partial width of the input measurements of this analysis are separately included by scaling their partial width by κ_i .

Reduced coupling-strength modifiers $\kappa_F m_F/v$ for fermions (F=t,b, τ,μ) and $V[\kappa_V]m_V/v$ for weak gauge bosons (V=W,Z) as a function of their masses m_F and m_V , respectively, and the vacuum expectation value of the Higgs field v=246 GeV. The SM prediction for both cases is also shown (dashed line). The black error bars represent 68% CL intervals for the measured parameters.

The coupling modifiers are measured assuming no BSM contributions to the Higgs boson decays, and the SM structure of loop processes such as ggF, $H \rightarrow \gamma\gamma$ and $H \rightarrow Z\gamma$. The lower panel shows the ratios of the values to their SM predictions. The level of compatibility between the combined measurement and the SM prediction, estimated using the procedure outlined in the text with six degrees of freedom, corresponds to a p-value of $p_{SM}=19\%$.

Parametrisations of κ parameters (ATLAS-CONF-2021-053)

Table 6: Parametrisations of Higgs boson production cross sections σ_i , partial decay widths Γ^f , and the total width Γ_H , normalised to their SM values, as functions of the coupling-strength modifiers κ . The effect of invisible and undetected decays is not considered in the expression for Γ_H . For effective κ parameters associated with loop processes, the resolved scaling in terms of the modifications of the Higgs boson couplings to the fundamental SM particles is given. The coefficients are derived following the methodology in Ref. [37, 41].

Loons	Main	Effective	Resolved modifier
Loops	interference	modifier	Resolved mounter
\checkmark	t-b	κ_g^2	$1.040 \kappa_t^2 + 0.002 \kappa_b^2 - 0.038 \kappa_t \kappa_b - 0.005 \kappa_t \kappa_c$
-	-	-	$0.733 \kappa_W^2 + 0.267 \kappa_Z^2$
-	-	-	κ_Z^2
\checkmark	t–Z	$K_{(ggZH)}$	$2.456 \kappa_Z^2 + 0.456 \kappa_t^2 - 1.903 \kappa_Z \kappa_t$ $- 0.011 \kappa_Z \kappa_b + 0.003 \kappa_t \kappa_b$
-	-	-	κ_W^2
-	-	-	κ_t^2
-	t-W	-	$2.909 \kappa_t^2 + 2.310 \kappa_W^2 - 4.220 \kappa_t \kappa_W$
-	t-W	-	$2.633 \kappa_t^2 + 3.578 \kappa_W^2 - 5.211 \kappa_t \kappa_W$
-	-	-	κ_b^2
-	-	-	κ_b^2
-	-	-	κ_W^2
\checkmark	t-b	κ_g^2	$1.111 \kappa_t^2 + 0.012 \kappa_b^2 - 0.123 \kappa_t \kappa_b$
-	-	-	κ_{τ}^2
-	-	-	κ_Z^2
-	-	-	κ_c^2 (= κ_t^2)
			$1.589 \kappa_W^2 + 0.072 \kappa_t^2 - 0.674 \kappa_W \kappa_t$
\checkmark	t-W	κ_{γ}^2	$+0.009 \kappa_W \kappa_\tau + 0.008 \kappa_W \kappa_b$
			$-0.002 \kappa_t \kappa_b - 0.002 \kappa_t \kappa_\tau$
\checkmark	t-W	$\kappa^2_{(Z\gamma)}$	$1.118 \kappa_W^2 - 0.125 \kappa_W \kappa_t + 0.004 \kappa_t^2 + 0.003 \kappa_W \kappa_b$
-	-	-	$\kappa_s^2 \ (= \kappa_b^2)$
-	-	-	κ_{μ}^2
$B_{u.} = 0$			
			$0.581 \kappa_b^2 + 0.215 \kappa_W^2 + 0.082 \kappa_g^2$
/		2	$+0.063 \kappa_{\tau}^2 + 0.026 \kappa_Z^2 + 0.029 \kappa_c^2$
\checkmark	-	К _H	$+0.0023 \kappa_{\gamma}^2 + 0.0015 \kappa_{(Z_{\gamma})}^2$
			$+0.0004 \kappa_s^2 + 0.00022 \kappa_{\mu}^2$
	Loops	Main Loops Main interference $t-b$ - - - -<	LoopsMainEffective modifier \checkmark $t-b$ κ_g^2 \sim $ \sim$ $ \checkmark$ $t-Z$ $\kappa_{(ggZH)}$ \sim $ \checkmark$ $t-W$ $ \sim$ $ \sim$ $t-W$ $ \sim$ $t-W$ $ \sim$ $t-W$ $ \sim$ $t-W$ κ_g^2 \sim $t-b$ κ_g^2 \sim $t-b$ κ_g^2 \sim $t-W$ κ_{γ}^2 \checkmark $t-W$ κ_{γ}^2

- Invisible decays: decays which are identified through a E_T^{miss} signature in the analyses. In the SM, the branching fraction of invisible decays is predicted to be 0.1%, exclusively from the process. The BSM contribution to this branching fraction is denoted as B_i .
- Undetected decays: decays to which none of the analyses included in this combination are sensitive, such as decays to light quarks which have not yet been resolved, or undetected BSM particles without a sizable E_T^{miss} in the final state. For the former, the SM contribution of these undetected decays is already included in Γ^{SM} , and amounts to 11%, mainly driven by the decays to gluon pairs. The BSM contribution to the undetected branching fraction is denoted as B_u . Note that deviations of the partial width of the input measurements of this analysis are separately included by scaling their partial width by κ_i .

Best-fit values and uncertainties for Higgs boson coupling modifiers per particle type with effective photon, $Z\gamma$ and gluon couplings and either $B_{i.} = B_{u.} = 0$ (left), or $B_{i.}$ and $B_{u.}$ included as free parameters with the conditions $\kappa_{W,Z} \le 1$ imposed and the measurement of the Higgs boson decay rate into invisible final states included in the combination (right). For the $B_{i.}$ and $B_{u.}$ results, the bar with the left-facing arrow indicates an upper limit at 95% CL.

The SM corresponds to $B_{i.}=B_{u.}=0$ and all κ parameters set to unity. All parameters except κ_t and $B_{i.}$ are assumed to be positive. In the former case, the level of compatibility between the combined measurement and the SM prediction, estimated using the procedure outlined in the text with nine degrees of freedom, corresponds to a p-value of $p_{SM} = 33\%$. In the latter scenario, p_{SM} in not provided due to the bounds on $K_{W.Z}$. Table 8: Fit results for Higgs boson coupling modifiers per particle type with effective photon, $Z\gamma$ and gluon couplings and either (a) $B_{i.} = B_{u.} = 0$, or (b) $B_{i.}$ and $B_{u.}$ included as free parameters, with the conditions $\kappa_{W,Z} \le 1$ imposed and the measurement of the Higgs boson decay rate into invisible final states included in the combination. The SM corresponds to $B_{i.} = B_{u.} = 0$ and all κ parameters set to unity. All κ parameters except for κ_t are assumed to be positive.

Parameter	(a) $B_{i.} = B_{u.} = 0$	(b) $B_{i.}$ free, $B_{u.} \ge 0$, $\kappa_{W,Z} \le 1$
KZ	0.99 ± 0.06	$0.96 \begin{array}{c} + 0.04 \\ - 0.05 \end{array}$
КW	1.06 ± 0.06	$1.00 \stackrel{+ 0.00}{- 0.03}$
КЪ	0.87 ± 0.11	0.81 ± 0.08
K _t	0.92 ± 0.10	0.90 ± 0.10
κ_{μ}	$1.07 \stackrel{+ 0.25}{- 0.30}$	$1.03 \begin{array}{c} + 0.23 \\ - 0.29 \end{array}$
$\kappa_{ au}$	0.92 ± 0.07	0.88 ± 0.06
Kγ	1.04 ± 0.06	1.00 ± 0.05
$\kappa_{Z\gamma}$	$1.37 \stackrel{+ 0.31}{- 0.37}$	$1.33 \begin{array}{c} + 0.29 \\ - 0.35 \end{array}$
Kg	$0.92 \stackrel{+ 0.07}{- 0.06}$	$0.89 \stackrel{+ 0.07}{- 0.06}$
<i>B</i> _{i.}	-	< 0.09 at 95% CL
<i>B</i> _{u.}	-	< 0.16 at 95% CL

Comparison to previous ATLAS iteration

	36.1 fb ⁻¹ (<u>PRL 120 (2018) 211802</u>)	Full Run 2 - 139 fb ⁻¹
Flavour Tagging	MV2c100 (b vs c) + MV2cl100 (c vs l) (c-tag) (Working point optimisation)	DL1 (c-tag) + MV2c10 (b-veto) (Working point optimisation)
Efficiencies	c-jets (41%), b-jets (25%), light-jets (5%)	c-jets (27%), b-jets (8%), light-jets (1.6%)
FTAG Calibrations	36 fb ⁻¹	140 fb ⁻¹ , 80 fb ⁻¹ for c-jets Calibrations derived by analysis team
Lepton Channels	2 lepton	0, 1 and 2 lepton
Jet Categories	2+ jets	2 and 3(+) jets
p_T^V Regimes	$75 < p_T^V < 150 \; { m GeV}$	75 < p_T^V < 150 GeV (only in 2L)
	p_T^V > 150 GeV	p_T^V > 150 GeV
SRs	1 and 2 c-tags	1 and 2 c-tags
CRs	-	Top emu (2L), Top (OL/1L), High dR, O c-tag
Main bkgs treatment	Floating Z+jets norms in each category	Common floating normalisations
VH(bb) Treatment	SM background SR overlap	SM background Orthogonality in SRs
VH(bb) Fraction in 2 c-tag	6%	0.7%
Truth Tagging	ΔR(jet ₁ ,jet ₂)	Min $\Delta R(tagged jet, closest jet_2)$

- Fit to 36.1 fb⁻¹ dataset with signal regions from 36.1 fb⁻¹ analysis
 - Reminder: 2 lepton only
 - 36% improvement in the expected limit
 - Mostly due to better flavour tagging performance
- + New 2 lepton channel SRs and CRs
 - **43% improvement** in the expected limit w.r.t previous iteration
 - Mainly better FTAG performance
 - Addition of diboson POIs (-7%)
 - Split in nJet categories (+6%)
 - Use of ∆R CR, 0-ctag CR, top emu CR (+10%)
- + Full Run 2 data and 0 lepton and 1 lepton channels
 - Factor 5 improvement in the expected limit w.r.t previous iteration