LATEST RESULTS OF THE BOREXINO EXPERIMENT ON SOLAR NEUTRINOS

ALESSIO CAMINATA INFN GENOA (ITALY) ON BEHALF OF THE BOREXINO COLLABORATIC

La Thuile 2022 | March 8th, 2022

THE BOREXINO EXPERIMENT

- Main goal: the detection of low energies solar neutrinos, in particular ⁷Be neutrinos.
- Detection method: elastic scattering off neutrinos on electrons.

 $\nu_x + e \rightarrow \nu_x + e \quad x = e, \mu, \tau$

- Location: LNGS (Laboratori Nazionali del Gran Sasso)
- Detection medium: large mass of organic liquid scintillator.

The expected rate of ⁷Be solar neutrinos in 100 ton of Borexino scintillator is about 50 counts/day which corresponds to 10⁻⁹ Bq/kg.

Just for comparison, natural water is about 10 Bq/kg in ²³⁸U, ²³²Th and ⁴⁰K. Huge effort to achieve extreme high radiopurity levels

LABORATORI NAZIONALI GRAN SASSO (ITALY)

The **LNGS** altitude is 963 m and the average rock cover is about 1400 m. The shielding capacity against cosmic rays is about 3800 m.w.e.:

in Borexino the muon flux is reduced by a factor 10⁶ with respect to the surface. $\Phi(\mu) \sim 1 \, \mu/{
m m}^2/{
m h}$

DETECTOR DESIGN

Scintillator:

280 ton of PC+PPO in a 125 µm thick nylon vessel; Fiducial mass ~ 100 ton; Electron density: $(3.307 \pm 0.003) \times 10^{29}$ /ton Mass density: $\simeq 0.879$ g/cm³

> Nylon vessels: Outer: 5.50 m Inner: 4.25 m

Stainless Steel Sphere: 2212 Photomultipliers

> <u>Non-scintillating</u> <u>buffer:</u>

900 ton of quenched scintillator

Water Tank:2.8 kton of pure H_2O γ and n shield μ water Čerenkovdetector208 PMTs in water

STUDYING THE SUN WITH NEUTRINOS...

 $4\,\mathrm{p}
ightarrow lpha + 2\,\mathrm{e}^+ + 2\,
u_\mathrm{e} \qquad \mathrm{E_{released}} \sim 26\,\mathrm{MeV}$

-While γ massively interact with the solar plasma and take about 10⁵ years to reach our star surface, neutrinos stream out the Sun and take just 8 minutes to reach the Earth

-Performing solar neutrino spectroscopy is the only way to get a real-time snap-shot of the nuclear processes inside the Sun

(INFN

THE SOLAR NEUTRINO SPECTRUM

7

THE SOLAR NEUTRINO SPECTRUM

THE SOLAR NEUTRINO SPECTRUM

CINFN () A

A. Caminata Les Rencontres de Physique de la Vallée d'Aoste Mar 8th 2022

SCINTILLATION LIGHT

- Reconstruction of:
 - Event position
 - Energy
 - Particle kind (α , β +, β -)
- Isotropic light:
 - No directionality (but Cherenkov)
- σ(E) ~ 50 keV
 σ(r) ~10 cm
 @ 1 MeV

• Performances investigated using calibration sources

THE THREE-FOLD COINCIDENCE TECHNIQUE (TFC)

The TFC technique is fundamental to improve the fit capability to disentangle the ¹¹C contamination from the pep & CNO neutrino signals.

$$\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$$

$$\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$$

$$\mu + p \rightarrow d + \gamma$$

$$\tau \sim 260 \ \mu s$$
The likelihood that a certain event is {}^{11}C is stained using:
Distance in space and time from the μ -track;
Distance from the neutron;
neutron multiplicity;
Muon dE/dx and number of muon clusters in an event.
Spherical cut around the 2.2 Mev γ site μ the second sec

Tł

ok

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505 LER analysis Physical Review D 100, 082004 (2019)

INFN

Main background sources:

- ¹⁴C: irreducible background in any organic scintillator;
- ²¹⁰Bi: comes from ²¹⁰Pb, is not in equilibrium with the ²³⁸U chain;
- ²¹⁰Po: comes from ²¹⁰Bi, is not in equilibrium with the ²³⁸U chain;
- ⁸⁵Kr: present in air;
- ¹¹C: produced by μ;
- pile-up of events (mainly ¹⁴C).

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505 <u>LER analysis</u> Physical Review D 100, 082004 (2019) <u>HER analysis</u> Physical Review D 101, 062001 (2020)

A B I CONTRACT THE REAL PROPERTY AND A DECIMAL PROPERTY AND A DECIMA				The Party of the Los
Solar neutrino	Rate (counts per day per 100 t)	Flux (cm ⁻² s ⁻¹)	Flux–SSM predictions (cm ⁻² s	⁻¹)
рр	$134\!\pm\!10^{+6}_{-10}$	$(6.1\pm0.5^{+0.3}_{-0.5}) imes10^{10}$	$\begin{array}{c} 5.98(1.0\pm0.006)\times10^{10}\\ 6.03(1.0\pm0.005)\times10^{10} \end{array}$	(HZ) (LZ)
⁷ Be	$48.3\!\pm\!1.1^{+0.4}_{-0.7}$	$(4.99 {\pm} 0.11 {}^{+0.06}_{-0.08}) \times 10^9$	$\begin{array}{l} 4.93(1.0\pm0.06)\times10^9\\ 4.50(1.0\pm0.06)\times10^9\end{array}$	(HZ) (LZ)
<i>рер</i> (HZ)	$2.43 \!\pm\! 0.36^{+0.15}_{-0.22}$	$(1.27\pm0.19^{+0.08}_{-0.12}) imes10^{8}$	$\begin{array}{c} 1.44(1.0\!\pm\!0.01)\!\times\!10^8 \\ 1.46(1.0\!\pm\!0.009)\!\times\!10^8 \end{array}$	(HZ) (LZ)
pep (LZ)	$2.65 \!\pm\! 0.36^{+0.15}_{-0.24}$	$(1.39 {\pm} 0.19 {}^{+0.08}_{-0.13}) \times 10^8$	$\begin{array}{c} 1.44(1.0\!\pm\!0.01)\!\times\!10^8 \\ 1.46(1.0\!\pm\!0.009)\!\times\!10^8 \end{array}$	(HZ) (LZ)
⁸ B _{HER}	$0.223\substack{+0.015+0.006\\-0.016-0.006}$	$(5.68^{+0.39}_{-0.41}{}^{+0.03}_{-0.03})\times10^6$	$\begin{array}{c} 5.46(1.0\!\pm\!0.12)\!\times\!10^6 \\ 4.50(1.0\!\pm\!0.12)\!\times\!10^6 \end{array}$	(HZ) (LZ)
CNO	<8.1 (95% C.L.)	<7.9 × 10 ⁸ (95% C.L.)	$\begin{array}{l} 4.88(1.0\pm0.11)\times10^8\\ 3.51(1.0\pm0.10)\times10^8\end{array}$	(HZ) (LZ)
hep	<0.002 (90% C.L.)	$<2.2 \times 10^{5}$ (90% C.L.)	$7.98(1.0\pm0.30) \times 10^3$ 8 25(1.0±0.12) × 10 ³	(HZ) (LZ)

TOWARDS THE CNO-V MEASUREMENT

The similarity between the CNO, pep and ²¹⁰Bi spectral shapes limits the sensitivity of Borexino.

Expected rates:

- CNO v ~ 4-5 cpd/100 ton
- pep v \sim 3 cpd/100 ton
- ²¹⁰Bi ~ 15-20 cpd/100 ton

TOWARDS THE CNO-V MEASUREMENT (2)

To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions as described in *Nature 562 (2018) 505.*

The ²¹⁰Bi spectrum is still quasi-degenerate with the CNO neutrino one.....

TOWARDS THE CNO-V MEASUREMENT (2)

To reduce correlations we put a constraint on the pp/pep ratio following the theoretical predictions as described in *Nature 562 (2018) 505*.

INFN

²¹⁰Po is "easier" to identify than ²¹⁰Bi:

- α decay \rightarrow pulse shape discrimination
- Monoenergetic → "gaussian" peak

The ²¹⁰Bi spectrum is still quasi-degenerate with the CNO neutrino one.....

.... But the ²¹⁰Bi rate can be constrained by precisely (and independently) mapping the ²¹⁰Po rate!

¹⁰Pb
$$\xrightarrow{\beta^{-}}_{23y}$$
 ²¹⁰Bi $\xrightarrow{\beta^{-}}_{5d}$ ²¹⁰Po $\xrightarrow{\alpha}_{138d}$ ²⁰⁶Pb (stable)

2

TOWARDS THE CNO MEASUREMENT (3)

- Convective motions triggered by seasonal changes in temperature bring inside the scintillator an unknown amount of ²¹⁰Po which has been present on the nylon Inner Vessel.
- This breaks the secular equilibrium of the ²¹⁰Pb chain!
- Before performing any counting analysis, we had to thermally insulate the detector to stop convective motions! DONE and COMPLETED in May 2016 ⁽ⁱ⁾

TOWARDS THE CNO MEASUREMENT (4)

²¹⁰Po counting rate inside the Inner Vessel scintillator volume

TOP

TOWARDS THE CNO MEASUREMENT (5)

- There is an innermost region of the scintillator which is almost free of convective currents: the ²¹⁰Po rate can be there fitted assuming bulk+IV contributions.
- We get a minimum for the ²¹⁰Po rate and an upper limit for the ²¹⁰Bi rate!

This ²¹⁰Bi upper limit can be extended over the full FV <u>if and only</u> ²¹⁰Bi is found, within error, uniform both in the angular and radial distributions. And this is our case. ²¹⁰Bi stable in time \rightarrow ²¹⁰Pb leaching from the nylon vessel is negligible. **R(²¹⁰Bi) < 11.5 ± 1.3 cpd/100t**

THE CNO MEASUREMENT

"Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun", Nature 587 (2020) 577

INFN

Directionality

- Sub-MeV neutrino detection using Cherenkov light
- Correlated and Integrated Directionality (CID)
- Different time profile for Cherenkov and scintillation photons
- Analysis done on 1st and 2nd detected photoelectrons

INFN

Directionality

"First Directional Measurement of sub-MeV Solar Neutrinos with Borexino" PhysRevLett.128.091803 "Correlated and integrated directionality for sub-MeV solar neutrinos in Borexino" PhysRevD.105.052002

- ROI: (0.54-0.74) MeV
- Dataset: 2007-2010
- CID: analysis statistical-based, no event by event analysis
- Ratio between Cherenkov and scintillation photons ~0.4%
- PDF obtained by MC simulations
- MC validated with calibration runs in 2009
- Background only hypothesis rejected > 5σ
- Measured rate compatible with theoretical expectations

- Borexino has mapped out the entire pp solar fusion chain with high precision and it has demonstrated the existence of CNO neutrinos for the first time (significance 5σ)
- Borexino provided the first directional measurement of sub-MeV solar neutrinos using Cherenkov light:
 - Exclusion of no neutrino signal hypothesis with >5σ
 - Other LS detectors can readily benefit from this analysis

Farewell and thank-you Borexino!

- First Physics Run: 05/16/2007
- Last Physics Run: 10/07/2021

A. Caminata Les Rencontres de Physique de la Vallée d'Aoste Mar 8th 2022

HOW TO EXTRACT A NEUTRINO SIGNAL

We need to develop powerful tools to separate the signal from the residual background components

THE STANDARD SOLAR MODEL

A Standard Solar Model (SSM) is a complex container where input parameters (such as Sun Luminosity, Age, Mass, Radius, Chemical elements abundances, Metallicity....) are considered all together and result in expectations about the neutrino fluxes and helioseismology.

2 PG 2 PG 2			The METALLICITY Puzzle
Flux	B16-GS98	B16-AGSS09met	
Φ(pp)	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.005)$	
$\Phi(\text{pep})$	$1.44(1 \pm 0.01)$	$1.46(1 \pm 0.009)$	
Φ (hep)	$7.98(1 \pm 0.30)$	$8.25(1 \pm 0.30)$	
$\Phi(^7\text{Be})$	$4.93(1 \pm 0.06)$	$4.50(1 \pm 0.06)$	→ About 9 % difference
$\Phi(^{8}B)$	$5.46(1 \pm 0.12)$	$4.50(1 \pm 0.12)$	→ About 18 % difference
$\Phi(^{13}N)$	$2.78(1 \pm 0.15)$	$2.04(1 \pm 0.14)$	
Φ(¹⁵ O)	$2.05(1 \pm 0.17)$	$1.44(1 \pm 0.16)$	About 28 % difference
$\Phi(^{17}\mathrm{F})$	$5.29(1 \pm 0.20)$	$3.26(1 \pm 0.18)$	B16 - Solar Model
Model and S 10 ⁸ (pep,	olar Neutrino Fluxes. Units ¹³ N, ¹⁵ O), 10 ⁶ (⁸ B, ¹⁷ F), a	Are: 10^{10} (pp), 10^9 (⁷ Be), nd 10^3 (hep) cm ⁻² s ⁻¹	N. Vinyoles et al. Astrophys. Journal 835:202 (2017)
			er som state state at the state of the state

INFN

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505

The Borexino experiment has never been so performing...

- 1. Improved radiopurity, because of the purification campaign;
- 2. Increased statistics;
- 3. Increased stability of the detector;
- 4. Better comprehension of the details of the energy scale and detector response.
- So all challenges at once!

For the first time we are able to perform a simultaneous fit on the whole solar neutrino energy region.

The analysis is carried out on two energy ranges:

- LER (Low Energy Range) between (0.19 2.93) MeV (pp, pep and ⁷Be v)
- HER (High Energy Range) between (3.2 -16) MeV (⁸B and hep v)

A. Caminata Les Rencontres de Physique de la Vallée d'Aoste Mar 8th 2022

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505 LER analysis Physical Review D 100, 082004 (2019)

Main LER analysis features:

- Data-set: December 2011 May 2016;
- Exposure: 1291.51 days x 71.3 t
 → Exposure 1.6 times the one used for the ⁷Be measurement @ 5%;
- Fit range: 0.19 2.93 MeV.

Two complementary fit methods: Analytical fit

- model of the detector response;
- possibility to describe unknown time variations;

Monte Carlo fit

- detailed MC modeling tuned on calibrations data;
- sub% accuracy [Astr. Phys. 97 (2018) 136].

The data set is presented as two energy spectra: one with ¹¹C included (TFC-tagged) and one depleted in ¹¹C (TFC-subtracted) which are then simultaneously fit.

The multivariate fit is performed including the likelihood of:

- 1. Energy spectra (TFC-tagged and TFC-subtracted);
- 2. e^{-}/e^{+} pulse-shape distribution PS- \mathcal{L}_{PR} ;
- 3. Radial distribution.

A. Caminata Les Rencontres de Physique de la Vallée d'Aoste Mar 8th 2022

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505 HER analysis Phys. Rev. D 101, 062001 (2020)

Main HER analysis features:

- Data-set: January 2008 December 2016 (purification period excluded);
- Fiducial mass: extended to the entire active mass (from about 100 t to 300 t);
- Fit range: 3.2 -16 MeV;
- Total exposure: 1.5 kton x year (11.5-fold increase).

New strategy! A MonteCarlo radial fit on Low Energy (HER-I: 3.2-5 MeV) and High Energy (HER-II: 5-16 MeV) sectors so to better handling the background.

Extracting the neutrino signal from data:

Residual backgrounds affecting the ⁸B energy region are:

- ²⁰⁸TI (emanated from PMTs, from the vessel or internal);
- cosmogenic isotopes;
- ²¹⁴Bi (internal).

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505

Astrophysical implications of the results: probing solar fusion

Probing solar fusion by studying the two primary modes of terminating the pp-chain.

$$\mathcal{R} = \frac{2\Phi(^{7}\text{Be})}{\left[\Phi(pp) - \Phi(^{7}\text{Be})\right]}$$

B16-SSM expected values: \mathcal{R} = 0.180 ± 0.011 (HZ) \mathcal{R} = 0.161 ± 0.010 (LZ)

Borexino result:

 \mathcal{R} = 0.178 $^{+0.027}_{-0.023}$

INFN

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505

Astrophysical implications of the results: solar luminosity

Using Borexino results only we can calculate the neutrino solar luminosity: $\mathbf{L}_{\nu} = (\mathbf{3.89}_{-0.42}^{+0.35}) \times \mathbf{10^{33}\ erg\ s^{-1}}$ which agrees with the well measured photon value: $\mathbf{L}_{\mathbf{ph}} = (\mathbf{3.846} \pm \mathbf{0.015}) \times \mathbf{10^{33}\ erg\ s^{-1}}$

This confirms the nuclear origin of the solar power!

It proves that the Sun has been in thermodynamic equilibrium over the last 10⁵ years

STUDYING THE SUN WITH NEUTRINOS...STUDYING NEUTRINOS WITH THE SUN

Neutrino physics implications of the results: testing MSW-LMA

SSM-HZ solar-v fluxes from *N. Vinyoles et al., Astrophys. Journal 835:202 (2017)* Neutrino oscillation parameters from *I. Esteban et al., JHEP 01 (2017)*.

A. Caminata Les Rencontres de Physique de la Vallée d'Aoste Mar 8th 2022

"Comprehensive measurement of pp-chain solar neutrinos", Nature 562 (2018) 505 LER analysis Physical Review D 100, 082004 (2019)

Multivariate fit: neutrino interaction rates obtained by maximizing the binned likelihood function

N_h 500 600 100 200 300 400 700 800 900 ¹¹C ¹⁰C Counts / (day × 100 ton × N_h) $\sum_{p=0}^{n-1} \sum_{p=0}^{n-1} \sum_{p=0$ pile-up Be ext bka Total fit: p-value=0.7 500 2000 2500 1000 1500 Energy (keV)

$$\mathcal{L}_{\mathrm{MV}} = \mathcal{L}_{^{11}\mathrm{C-tag}} \cdot \mathcal{L}_{^{11}\mathrm{C-sub}} \cdot \mathcal{L}_{\mathrm{PS}} \cdot \mathcal{L}_{\mathrm{rad}}$$

INFN

