New Results from MicroBooNE

Steve Dennis Les Rencontres de Physique de la Vallée d'Aoste La Thuile 8th March 2022

Neutrino Oscillation

- Neutrinos change flavour as they propagate.
 - Dependent on L/E and neutrino mass.
- Know of three active flavours, each corresponding to a charged lepton flavour.
- Two known mass splittings.

Two-flavour Oscillation

Physics beyond the Standard Model!

Key Principle of 3F Oscillation Experiments $P(\nu_x \rightarrow \nu_y) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 (eV^2) \frac{L(km)}{E(GeV)})$ We directly measure this. We want to know this.

We control L by placing our detectors, and control E by tuning our sources (where possible)

Solar
$$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$$
7.42 $^{+0.21}_{-0.20}$ \longrightarrow 3 MeV reactor neutrino first maximum at 100kmAtm $\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$ +2.515 $^{+0.028}_{-0.028}$ \longrightarrow 1 GeV beam neutrino first maximum is at 500km \Rightarrow 3 MeV reactor neutrino first maximum at 1km

So we control this.

Mass splittings small!

The LSND and MiniBooNE Excess

- 20 years ago, the Liquid Scintillator Neutrino Detector at LANL saw an unexpected excess.
 arXiv:nucl-ex/9605002
 - Excess of electron antineutrinos in a muon antineutrino beam at 3.8σ.
 - Could be interpreted as evidence for oscillation at mass 0.2-10eV²
 - Inconsistent with known neutrinos.
- Development of the MiniBooNE experiment to test this hypothesis.
 - Same L/E, different energy, different uncertainties.

UNIVERSITY OF

MiniBooNE Electron-like Excess

Electron-like selection has a lot of photon backgrounds.

• But sees 4.5σ excess in neutrino mode, 4.7σ in antineutrino.

MiniBooNE

MiniBooNE Detector

MiniBooNE is a mineral oil Cerenkov detector.

Excess could be photon-like (mismodeled backgrounds) or electron-like (sterile neutrino?)

Or something more exotic?

Enter MicroBooNE

MicroBooNE?

- Designed to probe the LSND-MiniBooNE anomaly.
 - Same beam, baseline, L/E as MiniBooNE.
 - But a vastly improved detector technology the LArTPC.
- Liquid Argon TPCs have excellent ability to distinguish between electrons and photons.
 - Which lets us understand if the MiniBooNE excess was really caused by electron neutrinos, or some kind of photon background induced by the remaining muon neutrinos in the beam.

85 t fiducial LArTPC Exposed in the same beam as MiniBooNE.

MicroBooNE Event Displays

Ability to see hadronic system allows vertexing.

Can determine shower distance from vertex: \rightarrow Distinguish electrons and photons.

Liquid Argon TPC

A fully active tracking calorimeter: excellent resolution, and target-as-tracker is great for neutrinos which need high density.

MicroBooNE Running

- Collected data since 2015.
 - Currently analysing half of the collected POT (6.8x10²⁰ POT)
- Successfully operating LArTPC.
 - Important for future experiments! (eg DUNE)
- Neutrino interaction measurements.
- BSM physics searches.
- Longest continually running LArTPC to date.

But before we start:

Signal Processing:

From raw signals on wires to 2D reconstructed "hits"

Electric field calibration with lasers and cosmic muons

JINST 15 (2020) 07, P07010 JINST 15 (2020) P12037

Calorimetry calibration with crossing muons and ° samples

JINST 15 (2020) 03, P03022 JINST 15 (2020) 02, P02007

First complete analysis for LArTPC systematic uncertainties!

Adapted From J. Evans.

The MicroBooNE LEE Analyses

- Released four independent Low Energy Excess analyses.
 - Carefully validated before unblinding.
 - Search for a MiniBooNE-like excess in our data which we can do without assuming a specific underlying new-physics hypothesis.
- Three search for an electron-neutrino induced MiniBooNE-like excess.
 - Exclusive two-body charged current quasi-elastic nuE scattering (1e1p).
 - Semi-inclusive charged current nuE scattering without final state pions (1eNp0pi and 1e0p0pi)
 - Inclusive nuE scattering (1eX).
- One searches for a photonic MiniBooNE-like excess.
 - Using NC $\Delta \rightarrow N\gamma$ hypothesis
 - 1_Y0p, 1_Y1p

Photon-Like Analysis

Uses two two-photon selections to constrain NC π^0 background. Signal samples are single photon.

Physics modeled with GENIE v3.0.6 → Berger-Sehgal resonance model.

- To match MiniBooNE excess, requires 3.18x scaling of NC $\Delta \rightarrow$ Ny model.
- Rare process, never directly experimentally observed.

Photon selection BDTs

Photon-like data

Photon Results

Entirely consistent with nominal prediction at 1-sigma.

arXiv:2110.00409

• Rejects the NC $\Delta \rightarrow$ Ny LEE hypothesis at 94.8% CL.

Interpreted as branching fraction:

$${\cal B}_{
m eff}(\Delta o N\gamma) < 1.38\%$$
90% Cl

More than 50x better than world's previous limit!

Electron-like Search.

- Three independent analyses using different reconstruction.
 - Deep learning used for 1e1p.
 - Pandora used for 1eNp0pi/1e0p0pi.
 - Wire-Cell used for 1eX.
- Start with high-statistics muon-like samples.
 - Use to make data-driven electron-like prediction.
 - Heavily reduces uncertainties on electron-like spectrum.
- Use unfolded MiniBooNE-like excess to test hypothesis.
 - → Not a sterile model!

Constraints from muons

Steve Dennis

YOF

Electron-like Results - Neutrino Energy

Electron-like Results – Hadronic Energy

Electron-like Results – Lepton Angle

Electron-like Results

Observe electron neutrino candidates at or below predicted rates.

arXiv:2110.14054

Reject the hypothesis that simple electron neutrino charged current explains fully the MiniBoonE results at >97% CL in all analyses.

1eX analysis rejected median MiniBooNE electron-like model at 3.75σ

So, what's happening?

- I don't know.
 - But it's going to be interesting to find out.

But the LSND-MiniBooNE data exists. It doesn't go away just because another experiment didn't see it. It still needs to be explained.

Or what else?

 Decay of O(keV) Sterile Neutrinos to active neutrinos [13] Dentler, Esteban, Kopp, Machado Phys. Rev. D 101, 115013 (2020) [14] de Gouvêa, Peres, Prakash, Stenico JHEP 07 (2020) 141 New resonance matter effects [5] Asaadi, Church, Guenette, Jones, Szelc, PRD 97, 075021 (2018) Mixed O(1eV) sterile oscillations and O(100 MeV) sterile decay [7] Vergani, Kamp, Diaz, Arguelles, Conrad, Shaevitz, Uchida, arXiv:2105.06470 Decay of heavy sterile neutrinos produced in beam [4] Gninenko, Phys.Rev.D83:015015,2011 [12] Alvarez-Ruso, Saul-Sala, Phys. Rev. D 101, 075045 (2020) [15] Magill, Plestid, Pospelov, Tsai Phys. Rev. D 98, 115015 (2018) [11] Fischer, Hernandez-Cabezudo, Schwetz, PRD 101, 075045 (2020) 	Produces true electrons Produces true photons	 PRL 121, 241801 (2018) Many of these models predict more complex final states (e+e-) and/or differing levels of hadronic activity
 Decay of upscattered heavy sterile neutrinos or new scalars mediated by Z' or more complex higgs sectors [1] Bertuzzo, Jana, Machado, Zukanovich Funchal, PRL 121, 241801 (2018) [2] Abdullahi, Hostert, Pascoli, Phys.Lett.B 820 (2021) 136531 [3] Ballett, Pascoli, Ross-Lonergan, PRD 99, 071701 (2019) [10] Dutta, Ghosh, Li, PRD 102, 055017 (2020) [6] Abdallah, Gandhi, Roy, Phys. Rev. D 104, 055028 (2021) Decay of axion-like particles [8] Chang, Chen, Ho, Tseng, Phys. Rev. D 104, 015030 (2021) A model-independent approach to any new particle [9] Brdar, Fischer, Smirnov, PRD 103, 075008 (2021) 	Produces e+e ⁻ pairs	 → The hadronic state is becoming increasingly more important as a model discriminator • We are fortunate that LArTPCs are sensitive to these possibilities

From J. Evans.

Already started probing with first LEE results										
Reco topology Models	1e0p	1e1p	1eNp	1eX	e ⁺ e ⁻ + nothing	e⁺e⁻X	1γ0p	1 7 1p	1γΧ	
eV Sterile ν Osc	/	~	/	~						
Mixed Osc + Sterile ν	V [7]	1 [7]	1 [7]	1 [7]			/ [7]			
Sterile ν Decay	[13,14]	[13,14]	[13.14]	[13,14]			[4,11,12,15]	[4]	[4]	
Dark Sector & Z' *	[2,3]				[2,3]	[2,3]	[1,2,3]	/ [1,2,3]	[1,2,3]	
More complex higgs *					[10]	[10]	[6,10]	[6,10]	[6,10]	
Axion-like particle *					[8]		[8]			
Res matter effects	1 [5]	[5]	/ [5]	[5]						
SM γ production							~	~	/	

*Requires heavy sterile/other new particles also

Short Baseline Neutrino Program

What next for MicroBooNE?

- Bright future!
 - Only analysed a fraction of the dataset, there will be updated LEE results.
 - More data.
 - More models.
 - Improved analyses.
 - Many neutrino cross-section results coming out.
 - Liquid Argon R&D to help future experiments.
- But also an upgraded short baseline program at FNAL.
 - Two new detectors:
 - One upstream of MicroBooNE (SBND)
 - One downstream (ICARUS)
 - Can use the powerful near-detector method to drastically reduce systematic uncertainties on baseline-dependent physics.
 - All LArTPCs, so additional interaction and detector uncertainties can be cancelled.

Thanks for listening

Backup Slides

Steve Dennis

Liquid Argon TPCs

All cartoons by Yuki Akimoto - Higgstan KEK Pamphlet

What's a sterile neutrino?

We know there are three active neutrinos (that couple to the weak force) thanks to colliders.

But if there's another mass splitting, there has to be a fourth neutrino.

We know this neutrino doesn't couple to the weak force, because it would affect the fraction of Z bosons that decay into neutrinos, unless it is extremely heavy (>40 GeV).

So this hypothesis is called sterile – it doesn't interact directly, you only see it via effects like oscillation.

LSND Excess

Neutrino Oscillation

Neutrino oscillation is a quantum mechanical phenomenon in which a neutrino created with a specific lepton family number ("lepton flavor": electron, muon, or tau) can later be measured to have a different lepton family number. The probability of measuring a particular flavor for a neutrino varies between three known states, as it propagates through space (from Wikipedia, forgive me)

Neutrinos have different mass states and flavour states: they propagate as mass states but interact as flavour states. The mixing is controlled by the PMNS matrix U:

$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k} |\nu_{k}\rangle \qquad \qquad |\nu_{k}\rangle = \sum_{\alpha} U_{\alpha k}^{*} |\nu_{\alpha}\rangle$$

With only two flavours, the oscillation probabilities take the form:

$$P(\nu_x \to \nu_y) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 (\text{eV}^2) \frac{L(\text{km})}{E(\text{GeV})})$$

