

LA THUILE 2022 Les rencontres de physique de la vallée d'aoste

Status of the XENONnT Dark Matter Experiment

ANDREA MANCUSO - UNIVERSITY & INFN BOLOGNA

The XENON Collaboration

~ 170 scientists - 27 institutes / 11 countries

The XENON Collaboration

JCAP 04 (2016) 027

XENON10	XENON100	XENON1
Active Mass		
14 kg	62 kg	2 tons
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm

2005 - 2007

The XENON Project

JCAP 11 (2020) 031 Sensitivity

cm²

~10⁻⁴⁸ cm²

5.9 tons

N1T

XENONnT

2012 - 2018

The Xe Dual-Phase TPC

Detection Principle

The Xe Dual-Phase TPC

Detection Principle

Physics Research in XENON

Dark Matter

WIMP Search

- Spin independent
- Spin dependent
- Sub-GeV

- Dark Photons
- Axion-like particles (ALP)s
- Planck mass

Neutrinos

- Double beta decay of ¹³⁶ Xe
- Double-electron capture in ¹²⁴Xe
- Neutrino magnetic moment

Solar Neutrinos

- Boron-8
- pp neutrinos **Solar Axions**

Supernova neutrinos **Multi-messenger**

The Experiment

- Commissioned in 2020/21
- **Currently in Science Run: data taking** and analysis

Cryogenics & Xenon Purification Rn Distillation

Electronics, Data Acquisition & Slow Control

Xenon Storage, **Recovery & Kr Distillation**

The XENONnT TPC

- 5.9 t active LXe (3 times XENON1T)
- 494 PMTs Hamamatsu R11410-21 3-inches
- Tunable field shaping rings chain
- Materials selection based on intense screening campaing

- Liquid Xe Purification Achieved result: < 2 µBq/kg ²²²Rn achieved
 - Goal: 1 µBq/kg Extra factor of 2 reduction possible

- Electron lifetime >10 ms
- Rn Distillation Column • Ultra-low radon emanation

days since distillation start (intermediate mode)

Neutron & Muon Veto

M

N

Water Cherenkov Detector instrumented with 84 PMTs

Passive water shield

Water Cherenkov detector, currently operated with demi-water. In the next phase we will dope with 0.5% Gd-sulphate.

Inner region optically separated from the MV through high reflectivity ePTFE panels,

Instrumented with 120 low-radioactivity, high-QE PMTs

Aims to reduce the background of radiogenic neutrons coming from the detector materials

Gd-Water Purification Plant

(In commissioning at LNGS)

Reflectior

- Expected tagging efficiency with Gd: 87 % with water: 65%
- Goal: <1 neutron events / (20 tonne year)

Neutro

Nuclear recoil

 \bigotimes

Cryostat

XENONnT Commissioning

11

XENONnT First Science Run

First XENONnT Science Run ongoing

- Focused on WIMP search
- Investigation of the low-energy ER events

Initial XENONnT Perfomance

- Light Collection : ~17%
- **SPE Resolution** : ~27%
- Excellent PMTs performance

erformance PMT

Calibrations

XENONnT First Science Run

Projections

Expected WIMP-nucleon cross section

• Exposure Goal : 20 t x yr

 $\sigma_{SI} \sim 1.4 \times 10^{-48} \text{cm}^2 \text{ at } 50 \text{GeV/c}^2$

Rev.

102,

07

2004

(2020)

Low-Energy ER excess

- XENON1T observed an excess in the low-ER region
- XENONnT will be able to study this excess:

After few months of XENONnT data the various hypothesis to explain this excess can be discriminated at the 5σ level

14

Summary and Outlook

- - The XENONnT Experiment, located at Laboratori Nazionali del Gran Sasso, has been commissioned in 2020/21 and is currently taking science data :
 - with a Dual-phase Xe TPC with 5.9 t target mass
 - achieving an e-lifetime > 10 ms
 - with a low Rn level (< 2 µBq/kg)
 - with a reduced n-background thanks to the novel nVeto system
 - The analysis of the first months of Science Data will be focused on the WIMP search and on the low-ER events, shedding light into the excess of event in the low ER region, seen by its predecessor, XENON1T. THANKS FOR YOUR ATTENTION

xenon1t.org @XENONexperiment **@xenonexperiment**

Backup Slides

XENON1T Low ER excess

Observed 285 events in 1–7 keV Expected (232 \pm 15) events \rightarrow ~ 3.3 σ Poissonian fluctuation!

Excess observed at low energy Electron Recoil

... more data expected from XENONnT

• The signal is compatible with solar axions and the best fit on this hypothesis has 3.4 σ

• Other possibilities: e.g. Tritium (3.2 σ)

More data needed...

XENON1T

Cryogenics & Xenon Purification

Electronics, Data Acquisition & Slow Control

Xenon Storage, **Recovery & Distillation**

Erwann Masson, "From XENON1T to XENONnT: Latest Results and First Light", 32e Rencontres de Blois, 17-22 October

