SuperCDMS: status and prespectives

Emanuele Michielin on behalf of the SuperCDMS Collaboration

University of British Columbia

La Thuile 2022 March 7th 2022

The SuperCDMS Collaboration.. during COVID times

 ~ 100 scientists at 27 institutions from 5 countries.

2/19

..all searching to solve one of the greatest current mysteries: where is dark matter hiding?

From xkcd.com

SuperCDMS is a **direct detection** experiment which looks for scattering interactions of low-mass ($< 10 \,\text{GeV}/\text{c}^2$) dark matter particles with standard model particles.

SuperCDMS detector technology

When a particle scatters in a Si/Ge crystal lattice its transferred energy is dissipated via **heat** and **ionization**. If we can measure those, we'll have a clear signature of its interaction and we can infer its properties.

• **Phonons**, measured via Quasi-particle trap assisted Electrothermal feedback Transition edge sensors (QETs)

• Charge, measured via interleaved electrodes

SuperCDMS detectors

Interleaved Z-sensitive Ionization and Phonon detector:

- Prompt phonon and ionization signals for discrimination between nuclear and electron recoil events
- $\sim 1 \text{ keV}$ threshold, ER/NR discrimination power

HV detector:

- Observed phonon energy = $E_{\text{Recoil}} + E_{\text{NTL}}$
- $E_{\rm NTL}$ energy from Neganov-Trofimov-Luke effect: phonons created by drifting charges
- $E_{\mathbf{NTL}}$ proportional to V_b $(E_{\mathbf{NTL}} = eV_b n_{eh} = \frac{Y(E_{\mathbf{Recoil}})}{\epsilon} eV_b)$
- $Y(E_{\text{Recoil}}) = \frac{E_Q}{E_{\text{Recoil}}}$ needed input, Lindhard model used but not tested at low energies
- $\sim 100 \text{ eV}$ threshold but no ER/NR discrimination

SNOLAB SuperCDMS detectors

Successful campaign in Soudan finished, now moving to SNOLAB.

Detectors improvements:

- Bigger (more fiducial volume) and higher purity (less radioactive impurities) crystals
 - ► Ge (1.4 kg crystals) larger exposure
 - Si (0.6 kg crystals) lower mass reach

- Critical temperature Tc from 90 to 40 mK, resolution scales as ${\rm Tc}^3$
- Newly optimized QET geometry to enhance the phonon collection efficiency
- More channels for better event position reconstruction

Moving to SNOLAB

- 2 km underground (6800 m water equivalent)
- Cleanroom (class 2000 or better)
- Muon flux from cosmic rays reduced by a factor of 100 compared to the Soudan mine

SuperCDMS SNOLAB Experiment

Initial payload: ~ 30 kg total, 4 towers with 6 detectors per tower (12 iZIP, 12 HV)

- ν -dominated NR bkg
- $\mathcal{O}(0.1)$ cts/(keV kg d) γ background

- 15 mK base temperature
- Vibration isolation

Installation is happening!

Seismic platform installed

Radon filter system

Chilled water loop

Inner lead and polyethylene shield

Plan is to start commissioning run in 2023!

SuperCDMS sensitivity: a broadband DM search

Traditional Nuclear Recoil:	iZIP, Background free	>5 GeV
Low Threshold NR:	iZIP, limited discrimination	$>1 { m GeV}$
HV mode:	HV, no discrimination,	~ 0.3 - 10 GeV
Electron recoil:	HV, no discrimination,	${\sim}0.5~{\rm MeV}$ - $10~{\rm GeV}$
Absorption (Dark Photons, ALPs):	HV, no discrimination,	${\sim}1~{\rm eV}$ - 500 keV (peak search)

SuperCDMS SNOLAB nuclear recoil projected sensitivity

Limits obtained with conservative optimum interval method, no background subtraction

Under this condition:

- HV detectors approach these sensitivities in 2 years of operation
- IZIP detectors can run for more than 5 years without reaching background limitations

Stay tuned! Coming soon Snowmass White Paper with new projections including ER sensitivity and new detector R&D scenarios for the future

Not just installing SuperCDMS... the Cryogenic Underground TEst

- Close collaboration with SuperCDMS
- Facility background level similar to the Soudan campaign
- Running right now prototypes of HV SNOLAB detectors to study performances
- Capacity of testing 1 SuperCDMS detector tower
 - Towers 1 + 2 arrive this June
 - Towers 3 + 4 arrive this Sept
- Possibility of early science result!

Not just installing SuperCDMS... the HVeV program

- The HVeV are small gram scale R&D detectors:
 - Single electron-hole pair resolution devices!
- Ideal for studying charge transport in Si and Ge
 - Minimize charge leakage in all SuperCDMS devices
- Sensitivity to a variety of sub-GeV DM models with gram*day exposures
- Physics runs happening now in NEXUS (FNAL) test facility
- New results from a 0 V run coming soon!

Understanding the Nuclear Recoil Scale: IMPACT

- Ionization yield $Y(E_{\text{Recoil}})$ is energy dependent and not well known at lower energies
- Necessary input for our understanding of the HV detector data

- Determination of the yield via measurement of the total phonon energy and kinematic measurement of the recoil energy via a coincident detection of the scattered neutron
- 55.7 keV neutrons beam at Triangle Universities Nuclear Laboratory
- Total phonon energy measured with Si HVeV detector at 100 V with $\sim 3~{\rm eV}$ resolution
- Set of liquid scintillator detectors coupled to 2-inch PMTs to measure scattered neutrons at various angle

Understanding the Nuclear Recoil Scale: IMPACT

- 1. Measurement of total phonon energy spectrum for coincidence events
- 2. Simulation of recoil energy spectrum for coincidence events
- Determine Y by fitting the simulation to the HV measurement

Example of fit, 100 eV

Paper will be out soon! Working towards a Ge HVeV measurement soon.

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

- Photoneutron sources: high rate gamma sources (⁸⁸Y and ¹²⁴Sb) on top of a ⁹Be wafer to produce mono-energetic neutrons
- Neutrons irradiated 2 old-style Ge HV detectors, run at 70 and 25 V, at the end of Soudan campaign
- Full Geant4 simulation of neutron signal
- Electron recoil background spectrum dominated by Compton, modeled analytically and validated using source data without ⁹Be wafer

arXiv:2202.07043

Ionization yield extract with likelihood fit to data using a linear generalization of the standard Lindhard model

$$\begin{split} Y_r &= \frac{kg(\epsilon)}{1+kg(\epsilon)} \\ k(E_r) &= k_{low} + \frac{k_{high} - k_{low}}{E_{high} - E_{low}} (E_r - E_{low}) \end{split}$$

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

17/19

Understanding the Nuclear Recoil Scale: photoneutron measurement at Soudan

arXiv:2202.07043

Need for theoretical input!

Conclusion

- Exciting time ahead!
- The SuperCDMS SNOLAB Project is on track
 - ▶ Detector fab is complete and SNOLAB infrastructure is well advanced
 - ▶ Testing and characterization is happening at test facilities
 - ► The parameter space that SuperCDMS will explore is world-leading and unique
- Last results from Soudan era are being completed, new results will be released in the coming months!
- Begun a campaign to measure the nuclear recoil scale at low energies
- Intense and fruitful R&D effort ongoing to already develop the detector technology for the future - early science results being prepared!

SNOLAB backgrounds

- Dominant background: in-crystal ³H, ³²Si, ⁶⁸Ge
- Line-of-sight contamination from ²¹⁰Pb
- Material and cavern contamination: ⁴⁰K, ⁶⁰Co

"Singles" Background Rates	Electron Recoil				Nuclear Recoil $(\times 10^{-6})$	
(counts/kg/keV/year)	${\rm Ge}~{\rm HV}$	Si HV	Ge iZIP	Si $iZIP$	Ge iZIP	Si iZIP
Coherent Neutrinos					2300.	1600.
Detector-Bulk Contamination	21.	290.	8.5	260.		
Material Activation	1.0	2.5	1.9	15.		
Non-Line-of-Sight Surfaces	0.00	0.03	0.01	0.07	-	_
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.
Cavern Environment	_	_	_	_	510.	530.
Cosmogenic Neutrons					73.	77.
Total	27.	300.	22.	370.	3300.	2900.