

Thermal Dark Matter

 $10^{-22} eV$

- Thermal Dark Matter (DM) originating as a relic of the hot early Universe is one of the most compelling paradigms.
- Generic: only non-gravitational interaction between DM and Standard Model (SM)
- **Predictive:** minimum annihilation rate $<\sigma v > \approx 10^{-26} cm^3 s^{-1}$

J

Light Thermal Dark Matter - Hidden sector

- Freeze-out scenario with Light Dark Matter (LDM) requires new light mediator to provide the correct relic abundance
- Dark Matter can belong to a "hidden sector" secluded from the Standard Model (SM)
- Mutual interaction mediated by a massive gauge boson

- **Benchmark:** additional spin-one gauge boson *"dark photon"* A', neutral under SM, hidden $U(1)_D$ symmetry
- Kinetically mixing with SM $U(1)_{\gamma}$, (ϵ)

Possible dark photon signatures

Possible dark photon signatures

Light Dark Matter at accelerators

SLAC

Thermal origin of Dark Matter \rightarrow interaction between LDM and SM \rightarrow production mechanism in accelerator-based experiments

Light Dark Matter at accelerators

Thermal origin of Dark Matter \rightarrow interaction between LDM and SM \rightarrow production mechanism in accelerator-based experiments

... and the most sensitive way is to search for this production using a primary e^- beam to produce DM on fixed-target collisions

Hidden Sector LDM with vector portal predictions ...

... and more generally

- Missing momentum/energy experiments sensitive to multiple BSM scenarios...
 - Long-lived dark sector resonances
 - Strongly interacting DM
 - Freeze-in with heavy mediators
 - Millicharged dark sector particles
 - . . .
- And, in particular LDMX, could provide additional useful information for *e⁻N* scattering for future neutrino experiments

eN LOI Snowmass '21

Whitepaper will be released March 15

arXiv:1807.01730 arXiv:1801.05805

Missing momentum and LDMX

Missing momentum kinematics at a Fixed Target Experiment

LDMX Experimental approach

- Signal signature:
 - Recoiling electron with energy much lower than beam and small but measurable transverse momentum
 - Absence of any other activity in the final state

• Two main ingredients:

- Beam allowing for individual reconstruction of incident electrons
- Detector technology with high radiation tolerance and high data rate

SLAO

LDMX at SLAC: LCLS II Transfer Line

• LCLS-2 beam at SLAC:

- e^- beam for photon science
- Beam extraction using Linac to End Station A (LESA)
- 4 GeV beam energy
 - phase-II upgrade at 8 GeV
- Low-current
 - Measure each incoming and outgoing electron
- Fast repetition rate
 - Expect 37.2 MHz bucket frequency
 - ~10¹⁴e⁻electrons on target in 1-2 years

LDMX Baseline Schedule

2020	2023	2025	2027
Detector R&D	Construction	Phase I data taking	Phase II construction & operation

LDMX Detector Concept

- Fast, low mass tagger and recoil trackers
- Fast, granular and radiation hard **electro-magnetic calorimeter** enclosed by hermetic **hadronic calorimeter**.
- Trigger scintillator for counting e^- / bunch

LDMX Electromagnetic Calorimeter (ECAL)

- Si-W sampling calorimeter
- 32 Si layers, $\sim 40 X_0$ deep for extraordinary shower containment
- High-granularity
 - Transverse and longitudinal shower shapes
- MIP sensitivity
 - Tracking of isolated charged hadrons
- Missing Energy Trigger
 - In conjunction with the Trigger Scintillator

LDMX Hadron Calorimeter (HCAL)

- Scintillator based sampling calorimeter, similar technology of Mu2E cosmic ray veto (CRV)
- Readout adapted from ECAL HGCROC
- Alternating x/y orientation
 - Sensitive to EM showers escaping ECAL
 - Detect neutral hadrons with high efficiency in 0.1-10 GeV range
 - MIP sensitivity
- Two components, depth optimized using single neutrons:
 - Main HCAL: ~90 layers,

25 mm absorber / 20mm scintillator (~15 λ_A)

• Side HCAL: ~32 layers, ~3 λ_A

SLAC

HCAL Prototype designed and commissioned for LDMX CERN testbeam (Oct '21) Currently preparing for a 2nd testbeam in April 16

LDMX Tagger and Recoil Trackers

Tagger Tracker - Magnet Bore

- 7 double-sided low mass silicon strip modules (~ 0.7X₀)
 - 10*cm* spacing, ±100*mrad* stereo $\sigma_{r\phi} \sim 6\mu m, \sigma_z \sim 60\mu m$

Recoil Tracker - Fringe Field

- 4 stereo layers + 2 single-sided vertically oriented axial layers
- Compact, low mass
- Efficient reconstruction of

50MeV - 1.2 GeV recoil e^-

Tungsten Target

- $\sim 0.1 X_0$: high signal rate, keep momentum resolution
- Scintillator pads in the front/back

LDMX Track reconstruction

- LDMX search requires high precision tracking
- Tagger:
 - Off-energy beam rejection
- Recoil:
 - Low particle momentum regime in a strongly non uniform B
- Interfaced to ACTS, modern toolkit based on well-tested reconstruction code from LHC experiments
- Algorithms tuning in LDMX phase space for ultimate physics performance

LDMX Bremsstrahlung Background

LDMX Bremsstrahlung Background

LDMX Bremsstrahlung Background

JHEP04(2020)003

HCAL hit Veto

- Single scintillator bar with 5 Photoelectron (PE) hits in time with beam e⁻
- Targets events with soft product escaping ECAL acceptance and PN reactions leading to 1n/K⁰_L
- MIP Tracking in ECAL
 - Veto on reconstructed single isolated tracks around γ direction
 - Targets events with single $K^{+/-}$ decaying in the ECAL

Results and Sensitivity

 Expected background free search with 4×10^{14} electrons on target and $E_{beam} = 4GeV$

mass range up to

 $m_{\gamma} < 100 MeV$

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	2.1×10^{14}	8.2×10^{14}	2.4×10^{15}
Total events simulated	$8.8 imes 10^{11}$	$4.7 imes 10^{11}$	$6.3 imes 10^8$	$8 imes 10^{10}$
Trigger, ECal total energy $< 1.5 \mathrm{GeV}$	1×10^8	$2.6 imes 10^8$	$1.6 imes 10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	$2.3 imes 10^8$	3.1×10^4	1.5×10^8
ECal BDT (> 0.99)	9.4×10^5	$1.3 imes 10^5$	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1

JHEP04(2020)003

Phase-II upgrade

- Strategies to increase Phase-I reach
 - Change target density / thickness
 - Increase beam energy

• Future runs at higher energy are able to explore the phase space up to $m_{\chi} < 300 MeV$

- Thermal-relic models offer predictive and compelling explanation for Dark Matter existence
- LDMX is an electron beam on target experiment designed to probe the sub-GeV mass range for thermal-relic Dark Matter
 - Focus on invisible signature
 - Signal identification using missing momentum technique
- Sensitivity beyond invisible search:
 - General exploration of hidden sector physics, e.g. displaced vertex signatures
 - Electronuclear measurements in a unique forward phase space to support neutrino experiments
- Exciting times ahead as the experiment is moving from concept design to creation

BACKUP SLIDES

Advantages of Missing Momentum measurements

- Missing Mass:
 - i.e. Babar, Padme
 - Relies on reconstructing the full final state, only practical in e+/ecollisions, lower luminosity
- DM re-scattering:
 - i.e. BDX, MiniBoone
 - High intensity beams but Low probability of DM scattering (scales as the SM-DM coupling to the fourth power)
- Missing Energy
 - i.e NA64
 - Fewer kinematic handles wrt missing momentum
 - Lack of electron/photon discrimination, bkg from neutrinos

Kinematics sketch

ECAL BDT

- Example distributions of some of the variables used as input for the ECAL BDT based PN veto
- The variables are classified as "global", which take into account averages over the whole ECAL detector and "shower shape", which characterize the ECAL shower in the hypothesis of background event with a hard photon.

Global ECAL Variables

Shower Shape Variables

MIP Tracking in the ECAL

LDMX Concept

- High-luminosity measurement of missing momentum in multi-GeV fixed target electron collisions
 - Sensitive to dark matter production directly and via a mediator
 - Extend N64 sensitivity
- Low current ~pA with high bunch repetition ~40MHz electron (~10^8 e/second electrons on target [50Me-/s Phase I, 1Ge / s Phase II]) beam with 4-16 GeV energy.
 - Target sub-GeV DM search with below threshold to generate neutrinos => irreducible bkg
 - Proposed SLAC 4-8 GeV, 11 GeV jLab, 3.5-16 GeV SpS (which one has been finally accepted? SLAC?)
- With upgrade of trigger and daq LDMX can provide improved data on final states in eN scattering in multiGeV region, which is of interest to the neutrino scattering community

Rotated Feynman diagrams

Motivations for Accelerator searches for DM

Direct detection: Strong spin/velocity dependence

33

Higher energy

- Improved background rejection possibility
- Invisible background with ν still negligible with 10^{16} EOT
- Reduced 1n Photonuclear background, particularly critical for the analysis

Dark Matter as Thermal Relic: What IS light? (in this to

Dai

LDMX Electromagnetic Calorimeter (ECAL)

- Si-W sampling calorimeter
- 32 Si layers, $\sim 40 X_0$ deep for extraordinary shower containment
 - 30cm depth x 50 cm width
- High-granularity
 - Transverse and longitudinal shower shapes for Photo-Nuclear (PN) events rejection
- MIP sensitivity
 - Tracking of isolated charged hadrons for PN bkg rejection
- Missing Energy Trigger
 - In conjunction with the Trigger Scintillator

300(500) μm thick sensors

Results and Sensitivity

• Rejection factor of 10^{-13} is achieved for photons with $2.8 \ GeV < E_{\gamma} < 4 \ GeV$

- Expected background free search with 4×10^{14} electrons on target and $E_{beam} = 4GeV$
- $E_{beam} = 4GeV$ Outstanding sensitivity to a variety of thermal targets in c_{23}^{F} a mass range up to $m_{\chi} < 100MeV$

JHEP04(2020)003

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	$2.1 imes 10^{14}$	8.2×10^{14}	2.4×10^{15}
Total events simulated	$8.8 imes 10^{11}$	$4.7 imes 10^{11}$	$6.3 imes 10^8$	8×10^{10}
Trigger, ECal total energy $< 1.5 \mathrm{GeV}$	1×10^8	$2.6 imes 10^8$	$1.6 imes 10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \text{GeV}$	2×10^7	2.3×10^8	3.1×10^4	1.5×10^8
ECal BDT (> 0.99)	9.4×10^5	1.3×10^5	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks $= 0$	< 1	< 1	< 1	< 1

Search for Dark Matter

Illustration by Sandbox Studio, Chicago with Ana Kova

- In the last decades, extensive worldwide research program has been built to understand the particle nature of Dark Matter (DM) in the universe
- Searches for WIMP DM in the most natural areas in mass have found no signal so far

