GWD Vac'22

ETT EINSTEIN TELESCOPE

VACUUM AND CRYOGENICS IN INTERFEROMETRIC GW DETECTORS: MOTIVATIONS AND REQUIREMENTS

Gianluca Gemme INFN Genova

Sept 29, 2022 - La Biodola, Isola d'Elba, Italy

THE ET CONCEPT

Sensitivity of ET (currently being updated)

- ET Low Frequency (LF): large cryogenic (10 20 K) silicon test masses, seismic suspensions, new wavelength, FDS, ..
- ET High Frequency (HF): high power laser, high circulating light power, thermal compensation, large test masses, FDS, ...

VACUUM SYSTEM

Vacuum systems for planned 3G detectors are likely to be the largest UHV systems built

Preliminary estimated cost ~560 Meuro

Beam pipe is its largest component (~1/2 of the system cost) 120 Km - 1 m diameter UHV tubes, total volume ~10⁵ m³

Vacuum requirements: factor >5 more stringent than Virgo (for initial ET) 10^{-10} mbar for H₂, 10^{-11} mbar for N₂ and < 10^{-14} mbar for Hydrocarbons

Joint development with CERN involving ET and CE

WHY UHV IN GW INTERFEROMETERS?

> Reduce the noise due to refractive index fluctuations along the laser beam path

Reduce test mass motion excitation due to the impact of residual gas molecules

Contribute the preservation of cleanliness of the optical elements

> Isolate test masses and other optical elements from acoustic noise

Contribute to thermal isolation of test masses

Vacuum boundary interacts with light scattered from and returning to the interferometer

Optical layout, light scattering issues, vacuum conductance...

ET-HF: refractive index fluctuations along the laser beam path (beamtube)

ET-LF: test mass motion due to due to the impact of residual gas molecules (towers)

https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget

NOISE DUE TO VACUUM FLUCTUATIONS ALONG THE LASER BEAM PATH

Fluctuations of residual gas density induces fluctuations of refractive index and then of the laser beam optical path

S. E. Whitcomb. Optical pathlength fluctuations in an interferometer due to residual gas. Technical report, California Institute of Technology, October 1984.

NOISE DUE TO VACUUM FLUCTUATIONS ALONG THE LASER BEAM PATH

Gas	$R_{H_2} = \Delta \tilde{L}_{gas} / \Delta \tilde{L}_{H_2}$		
H_2	= 1		
H_2O	3.3		
N_2	4.2		
CO	4.6		
CH_4	5.4		
HC100AMU	38.4		
HC400AMU	208		

Residual gas index fluctuation spectral density, normalized to H_2 , for λ = 1064 nm

Zucker and Whitcomb, 1996

PRESSURE PROFILE ALONG THE TUBE DUE TO TUBE CONDUCTANCE

P(z)= Pmin+Q*(z/(C*L)-z²/(2*C*L²)

PRELIMINARY REQUIREMENTS

		ET 2020 Updated design Report	Refined calculation	Margin 10 (single gas)
$P^{max}H_2$	(mbar)	1*10 ⁻¹⁰		3*10 ⁻¹⁰
q H ₂	(mbar l/s cm²)	1.9*10-14		5.7*10 ⁻¹⁴
$Margin \ H_2$		11.8	17.2	10
$P^{max} H_2 O$	(mbar)	5*10-11		6.6*10 ⁻¹¹
q H ₂ O	(mbar l/s cm²)	5.25*10 ⁻¹⁵		7*10 ⁻¹⁵
Margin H_2C)	5.4	11.6	10
Total margi	n (H2O + H2)	4.9	10.4	
ems OK, butcan this be obtained at a lower cost? Material cost (mild steel, ferritic steel, aluminum,) Tube design (e.g. thin corrugated tubes)		ined at a lower cost? , ferritic steel, aluminum,) prrugated tubes)	PR	

- Material cost (mild steel, ferritic steel, aluminum,...)
- > Tube design (e.g. thin corrugated tubes...)
- Pre- and post-fabrication treatments (firing, bake-out,...)

Courtesy: A. Grado

TEST MASS MOTION EXCITATION DUE TO THE IMPACT OF RESIDUAL GAS MOLECULES

Viscosity of the residual gas limits the Q of the suspended test masses

$$Q_P = \frac{\rho_{TM} H f_0}{P} \sqrt{\frac{\pi k_B T}{2m}}$$

The resulting displacement power spectral density is

$$S_x(f) = \frac{k_B T f_0}{2\pi^3 Q_P M_{TM} f^4}$$

TEST MASS MOTION EXCITATION DUE TO THE IMPACT OF RESIDUAL GAS MOLECULES

Realistic interferometer configurations can exacerbate the viscous effect

Local outgassing

> «Squeeze film» damping (factor of 5 worse than ideal in LIGO)

MIRROR CONTAMINATION

Condensates or dust particles degrade the low-loss optical surfaces

- ➤ Excess loss
- Increased scattering
- > Absorption-induced heating \rightarrow distortion
- Irreversible damage

Contamination is typically cumulative

Cryogenically cooled mirrors (ET-LF) are particularly challenging \rightarrow formation of a «frost»multilayer on the surface

Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes

Kunihiko Hasegawa,^{1,*} Tomotada Akutsu,² Nobuhiro Kimura,^{3,4} Yoshio Saito,¹ Toshikazu Suzu. Takayuki Tomaru,^{3,4} Ayako Ueda,³ and Shinji Miyoki^{1,†}
 ¹Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan ²National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan ³High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan ⁴The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan

(Received 5 October 2018; published 31 January 2019)

Contributed by Roberto Cimino and Christian Day

Cryogenic vacuum issues on GWD optics

- From KAGRA experience, simulations indicate:
 - Reflectivity gets affected, already after 100 nm of H₂O ice
 - ET maximum thermal budget (0.1 1.0 W)is expected to be exceeded already after $\approx 1 - 10 \text{ nm of H}_2\text{O ice }$!!!

Optical loss study of molecular layer for a cryogenic interferometric gravitational-wave detector

Satoshi Tanioka, Kunihiko Hasegawa, and Yoichi Aso Phys. Rev. D **102**, 022009 – Published 27 July 2020

 $1 - 10 \text{ nm H}_2\text{O} \rightarrow 3 - 30 \text{ L}$

Molecular adsorbed layer formation on cooled mirrors and its impacts on cryogenic gravitational wave telescopes

 Kunihiko Hasegawa,^{1,*} Tomotada Akutsu,² Nobuhiro Kimura,^{3,4} Yoshio Saito,¹ Toshikazu Suzuki,^{1,3} Takayuki Tomaru,^{3,4} Ayako Ueda,³ and Shinji Miyoki^{1,†}
 ¹Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan
 ²National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan
 ³High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
 ⁴The Graduate University for Advanced Studies, Tsukuba, Ibaraki 305-0801, Japan

(Received 5 October 2018; published 31 January 2019)

▶ If $p_{\text{H}_2\text{O}} \approx 1 \times 10^{-10} \text{ mbar} \rightarrow \text{it takes } (10^4 \times (3 - 30) \text{ s}) = (9 - 90) \text{ h}$ to start observing detrimental effects!!!

Courtesy: S. Grohmann

THE KAGRA EXPERIENCE

Frosting on Mirrors \rightarrow significantly degrading finesse and sensitivity

- > Heaters were installed on intermediate mass to enhance the speed of heat up
- New requirement on acceptable vacuum leak level from 10⁻⁹ Pa m³/sec to 10⁻¹⁰ Pa m³/sec
- > Mass spectrometers were set in each cryostat for monitoring N₂. O₂, H₂O
- Cool-down strategy

Frosting on windows where the oplev light pass through \rightarrow Unreliable mirror alignment information \rightarrow no P/Y damping control for mirrors \rightarrow No operation of IFO

> Heaters were installed around windows on the inner and outer radiation shields

MITIGATION STRATEGIES

Passive

- Low pressure in mirror chambers (p_{H20} ~ 1e-12 mbar)
- > Use of cryo-panels around the mirrors
- Careful cool-down strategy (mirror last to be cooled)
- ≻ Low gas flow from beam line
- Primary laser-beam-induced desorption

Active

- ≻CO2 laser
- UV photons (risky for the coatings and the mirrors)
- Low energy electrons (risky for the coatings and the mirrors)

In ET the situation will differ from the one in KAGRA (lower partial pressure, cryotraps)

LIGHT SCATTERING FROM WALLS OR BAFFLES

The vacuum boundary intercepts and rescatters some light scattered from interferometers optics

Interference of this rescattered light with the original circulating field introduces a phase shift bearing the imprint of the wall's vibration

Coupling of the ambient acoustic and seismic environment into the interferometer

Classical and Quantum Gravity 27, 19 (2010) 194011

MITIGATION STRATEGIES

Reduce environmental noise (underground , optical bench suspended in vacuum, ...)

Wide angle scattering: local baffles (possibly seismically isolated, special material to reduce secondary rescattergin) are interposed between the the optics and vacuum walls

➤Narrow angle scattering: spatially distributed → impact on vacuum system design (and cost)

> Noise varies ~ inversely with beam tube radius

> Internal baffles must be fitted to absorb and attenuate the worst projected scattering

ONGOING ACTIVITY

Courtesy: Marc Andrés Carcasona

CRYOGENICS

MOTIVATION AND IMPACT

Limit the thermal noise impact on the sensitivity

Cryogenic payload (test mass+suspension)

- Preserving mechanical isolation
- ➤ Guaranteeing an efficient thermal link
- > Optical material (silicon, sapphire)
- Laser frequency (1550nm, 2000nm)
- Strong requirements on base operating vacuum in towers and/or mitigation strategies
- Requirement on length of thermal cycle

https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget

MOTIVATION AND IMPACT

Limit the thermal noise impact on the sensitivity

Cryogenic payload (test mass+suspension)

	Marionetta	Recoil Mass	Mirror
Masses for ETDLF (kg)	422	211	211
Wire Diameter (mm)	5	3	3
Wire length (m)	2	2	2
Wire Material	Ti6Al4V	Silicon	Silicon
Loss Angle	10^{-5}	10^{-8}	10^{-8}
Temperature (K)	2	10	10

https://gitlab.et-gw.eu/et/isb/interferometer/ET-NoiseBudget

CRYOGENIC PAYLOAD

Absorption of "best 45 cm" MCZ Si: 1.5um

CORE OPTICS AND COATINGS

Substrates

 Substrate (ET-HF silica / ET-LF silicon) of 200 kg-scale, diam≥45cm, with required purity and optical homogeneity/absorption

Silicon

- Czochralski (CZ) method produced test masses could have the required size, but show absorption excesses due to the (crucible) contaminants
- Float Zone (FZ) produced samples show the required purity, but of reduced size (20cm wrt ≥45cm required)
- Magnetic Czochralski (mCZ) could be the possible solution (45cm + abs 20 ppm/cm)?

Coating

- Amorphous dielectric coating solutions often either satisfy thermal noise requirement (3.2 times better than the current coatings) or optical performance requirement (less than 0.5ppm) – not both
- AlGaAs Crystalline coatings could satisfy ET-LF requirements, but currently limited to 200mm diameter. No physical/procedural showstopper to go to larger sizes but needs significant investment in technology development.
- Crystalline oxides?

ET-LF LASER WAVELENGTH

- ET-LF wavelength workshop (3rd/16th September 2021) : <u>https://wiki.et-gw.eu/ISB/Optics/ET-LFworkshop</u>
 - Aim : weight pros and cons for possible wavelengths (1.06, 1.5 and 2.0 um) and establish the needed R&D
 - Participation of other Divisions (ITF, SUSP, VAC&CRYO), LIGO Voyager and KAGRA
 - Outcome: 1550nm is still the preferred choice but other options should be kept open as alternatives/upgrades
 - Summary document to be published on ET TDS (draft on Overleaf:

https://www.overleaf.com/read/bffsvvfqdffy

List of possible wavelengths: technologies, properties/known issues "decision matrix"

Wavelength	1064	1550	1950	1980/5	2050	2090	2128
Substrate (material and properties)	Sapphire Absorption (20-200pm/cm) still too high and not reproducible (devpt needed) issues= biref, polishing, cost	Silicon abs=5-10ppm/cm (T>50K) Large size devpt needed Issues = large size - biref??	Silicon abs=5-10ppm/cm(T>50K) Large size devpt needed Issues = large size? Biret? Low abs only in smaller segments -> composite mirrors?				
Coating (type, expected/known properties: absorption, loss,)	Amorphous: no coating or mixed material design that will meet noise requirements? Yet Crystalline: AlGaAs very promising (v. low abs & losses) but scaling issues. AlGaN is lattice matched to Al2O3 but not suitably developed.	Amorphous: mixed material designs (e.g. Craig et al., Phys. Rev. Lett. 122, 231102, 2019) Crystalline: AlGaAs very promising but scaling issues. AlGaP?	a-Si likely good choice here (lower absorption than at 1.5)- possibly any shift to longer wavelength helpful? Low absorption could allow the increase of power (but depends also on radiation heat load which could be dominant) to compensate for optical losses (QE, FI,) SiN? Amorphous: mixed material designs (e.g. Craig <i>et al.</i> , Phys. Rev. Lett. 122, 231102, 2019)				
Laser (technology, performances, issues)	Power:OK Stabilisation: LF noise to be improved	Power:OK Stabilisation: LF noise to be improved	Power : development ongoing, lot of reliability studies to be done. Stabilisation: PSL components to be developed, low noise performances to be demonstrated coming from 1064nm pump.			(OPO conversion of 1064.) For Power and stabilisation see left cell. Maybe some advantages coming from 1064nm pump.	
Photodet and other optical elements	InGaAs QE>99%	InGaAs QE>99%	InGaAs, QE~80-85%, large 1/f noise - HgCdTe QE~92% - InAsSb QE~80% Development of low loss Faraday isolator needed Optical losses limit QN improvement above ~10Hz				
Losses and scattering	scattering losses -> FC cavity loss limits SQZ perf at LF More scattered light noise (cut off freq propto 1/lambda)						
Others or comments			Water vapor a laser compone	bsorption: is it an ents and for IOO?	issue for the	Is fused sili (120ppm/ci	ica absorption an issue m at 2128) for BS?

CRYOGENIC LOAD ESTIMATES (PER TOWER)

Component	Temperature level / K	Cooling power / W	Determines	
Arm pipe cryotraps	5080	x 10 ⁴	cryogenic	
Outer thermal shield	5080	x 10 ³	design!	
Inner thermal shield	5	x 10 ²	-	
Payload heat sink	2	x 10 ⁰	Small influence	
			on overall cost	

CRYOGENIC INFRASTRUCTURE CONCEPT

- One He cooling plant in each vertex
- Cooling power for cryotraps, thermal shields and detector at three differen temp levels
- Surface compressors
- Underground coldbox
- Cryogenic transfer system to towers

Courtesy: S. Grohmann

https://apps.et-gw.eu/tds/?content=3&r=17648

COOLING CYCLE: THE KAGRA EXPERIENCE

AMALDI RESEARCH CENTER

With ARC funds, we are preparing a lab for low temperature tests on a real size prototype of an ET LF-Payload Cryogenic Tests Area: Test Cryostat for a full size LF-Payload, cooled by two PT (~Ø 3 m x 3.5 m): **Pulse Tube Cooling Station** 2 thermal shields in insulation vacuum 1 experimental chamber with separated vacuum The Rome1 ET Group: From Virgo: Sibilla (Post Doc Researcher) Di Pace (Full Professor) Majorana Ettore Valentina Mangano (Post Doc Researcher) Naticchioni (INFN Researcher) Luca Maurizio Perciballi (INFN Technician) Paola (INFN Researcher) Puppo (Associate Professor) Piero Rapagnani **Payload Development and** Fulvio Ricci (Full Professor) Test Area (LF Payload – Real size) From CUORE: (INFN Researcher) Angelo Cruciani D'Addabbo (Post Doc Researcher LNGS) Antonio (INFN Researcher) Stefano Pirro

From EGO:

Paolo Ruggi

(EGO Researcher)

ET-PATHFINDER

- New facility for testing ET-LF technology in a low-noise, full-interferometer setup
- Key aspects: Silicon mirrors (3 to 100+kg), cryogenics cryogenic liquids and sorption coolers, water/ice management), "new" wavelengths (1550 and 2090nm), coatings etc
- Start with 2 FPMI, one initially at 120K and one 15K (2022+)
- >20 partners from NL/B/G/FR/SP/UK
- Initial capital funding of 14.5 MEuro
- Detailed Design Report available at apps.et-gw.eu/tds/?content=3&r=17177
- Open for everyone interested to join
- For more information please see:
 <u>www.etpathfinder.eu</u>

CREDIT: S. Hild

CONCLUSIONS

- Scientifically and engineering-intensive objectives, with major impacts on the cost and performance of the infrastructure
- Important synergies with existing (KAGRA) and future (CE) detectors
- Collaboration initiated with new groups with crucial and complementary expertise
- Large-scale R&D activities already ongoing

Challenging, requiring R&D, **BUT** it is indeed **FEASIBLE**!