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Evolution of Python Tools for the Simulation of Electron
Cloud Effects
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Zimmermann, 2002, Electron Cloud si i beam il and

® a betatron tune modulation along the longitudinal coordinate of the
bunch as a result of e-cloud forces. (6] F. Zimmermann, 2004, Review of Single bunch instabilities
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Previous attempts of using the Vlasov method to model e-cloud driven

instabilities have not included these points together. [10] k. ohmi et al, 2001, Wake-Field and
Fast Head-Tail Instability Caused by an Electron Cloud., [11] E. Perevedentsev, 2002, Head-Tail Instability Caused by Electron Cloud
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General description of e-cloud forces

Begin by describing the dipolar e-cloud forces:

[2] G. ladarola, et. al. 2020, Linearized method for the study of transverse instabilities driven by electron clouds
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General description of e-cloud forces
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These calculations use the e-cloud in the superconducting quadrupoles of the
LHC for a beam energy of 450GeV.

[2] G. ladarola, et. al. 2020, Linearized method for the study of transverse instabilities driven by electron clouds
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Linear model of e-cloud - Dipolar Forces

Describe the transverse centroid along the bunch, X(z), as a linear combination
of test functions h,: IS

2(2) =S aha(2);  an = % / %(2)ho(2)dz (1)

n=0

[2] G. ladarola, et. al. 2020, Linearized method for the study of
transverse instabilities driven by electron clouds
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Linear model of electron clouds -
Quadrupolar forces

Model detuning using a polynomial

AQ(z) = ZpAnz” (3)
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The Linerized Vlasov Equation - introduction

1o is a distribution of particles where each individual particle obeys a
Hamiltonian Ho.

The Vlasov equation describes the collective motion of the distribution /g

Introduce a perturbation, AH and /A, which means that the total
Hamiltonian is H — Hy - /AH and the total distribution is @/ — 1)g + A
This leads to the Linearized Vlasov Equation, which truncated to first
order and expressed with Poisson brackets is:

OAY

TR [A%, Ho] = —[tho, AH] (6)

The electron cloud forces are contained in AH

The distortion A is the impact of the perturbation and the unknown

[3] N. Mounet, 2018, Direct Vlasov Solvers




The Linearized Vlasov Equation
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Assuming the force is distributed uniformly in the accelerator:
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E-cloud in the Vlasov Equation - Dipolar Forces

The coherent force can be expressed using the responses k, introduced earlier.

Assuming the force is distributed uniformly in the accelerator:

2
coh _ Mmoyv /
F'(z,t) = >R Ax (M

Ax’ is a linear combination of the responses k, using the coefficients calculated
from the projection of h, on X(x, t), the average transverse position at
longitudinal position z.
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Beam instabilities are characterized by these qualltles

w is the angular revolution frequency, Qq is the unperturbed tune and Qs is the synchrotron frequency



Solving the Vlasov Equation - Ansatz of A

Equation to solve:
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Equation to solve:
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Equation to solve:
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Solving the Vlasov Equation - Ansatz of A

Equation to solve:

OBV (QuotAQ(r 0) 28 1, 08V _ _neo(r) dfy /zéxR sin 6, F<"(2, 1)
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Phase shift term to 9)
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known for
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Nt O0AD wi
Choose A® to have the constraint: 9 _ _W_OAQ"’(r’ ) (10)
Detuning from e-cloud can be divided into a detuning w longitudinal amplitude
and a head-tail phase shift N,
AQ(2,0) = AQ(r,¢) = Q3+ > Anz" = AQr(r) + AQu(r,¢)  (11)
n=0

[2] G. ladarola, et. al. 2020, Linearized method for the study of transverse instabilities driven by electron clouds



Solving the Vlasov Equation
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The linerized Vlasov Equation now becomes an eigenvalue problem:
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Solved by computing the matrices My, y/y and I\~/I,m,,/m/ and solve for
"eigenvalue” Q and mode b, using standard linear algebra packages.

Each eigenmode of the Vlasov equation corresponds to a possible distortion A1),

the tune shift is calcu-
lated from Re(2)
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growth rate .
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The e-cloud strength is a factor that multiply the e-cloud forces.
The Vlasov equation is solved for one e-cloud strength at a time yielding a set of Q

which corresponds to a vertical line in the plots.
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Results with zero chromaticity
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Benchmark against macro-particle simulations

® Use PyHEADTAIL, a conventional macro-particle simulation code, to
benchmark the Vlasov approach.

e Typically ~ 10° particles are tracked in a simulation.

® |f an LHC bunch is simulated, each of the macro-particles represent about
~ 10° protons.

® The accelerator is divided into segments, between which e-cloud forces are
acting on the beam. These simulations use 8 segments.

® The conventional simulation method of this interaction is the
Particle-In-Cell simulation method

® The linear model of forces can be used instead of PIC in macro-particle
simulation to benchmark the Vlasov approach.

Will now compare the results from macro-particle tracking and the Vlasov
approach, both using the linear model of e-cloud forces.
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Results with zero chromaticity - Phase Shift
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No detuning is included, meaning AQr = 0,
and AQe =0

The tune shift from macro-particle simulation
results is calculated using the SUSSIX algorithm

The Vlasov modes gives information about the
instability growth rate at each possible mode,
this information is not available from the macro-
particle simulations.

The same modes are visible in the results from
the Vlasov approach and the macro-particle
tracking.
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Benchmark linear model with PIC simulations
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Benchmark linear model with PIC simulations
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The two left plots are made with macro-particle simulations.

All simulations methods have fans of modes for low e-cloud strengths.
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The two left plots are made with macro-particle simulations.
All simulations methods have fans of modes for low e-cloud strengths.
Non-linear effects from e-cloud are present in middle plot which have a

stabilizing effect.

Modes with a tune shift AQ/Q. > 0 are not visible in the PIC simulations.
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Benchmark linear model with PIC simulations
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The two left plots are made with macro-particle simulations.

All simulations methods have fans of modes for low e-cloud strengths.
Non-linear effects from e-cloud are present in middle plot which have a
stabilizing effect.

Modes with a tune shift AQ/Q. > 0 are not visible in the PIC simulations.

For high e-cloud strength (>1.25), both macro-particle simulation methods
give similar results
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Benchmark linear model with PIC simulations
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The two left plots are made with macro-particle simulations.

All simulations methods have fans of modes for low e-cloud strengths.
Non-linear effects from e-cloud are present in middle plot which have a
stabilizing effect.

Modes with a tune shift AQ/Q. > 0 are not visible in the PIC simulations.
For high e-cloud strength (>1.25), both macro-particle simulation methods

give similar results and the worst Vlasov mode also have a tune shift between

—1<(Q— Q)/Qs <0.
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Benchmark linear model with PIC simulations
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A static non-linear map, independent on z, can be made by removing the linear
forces from the field map of the electron pinch and averaging along z.
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electron cloud strength
A static non-linear map, independent on z, can be made by removing the linear
forces from the field map of the electron pinch and averaging along z.

This map is then added to the linear e-cloud model.

The results using the linear model + a static non-linear map are similar to the
results using PIC: modes with AQ/Qs > 0 are stabilized.

h for modeling tron cloud instabiliti




Benge_bmark linear model with PIC simulations
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An excellent agreement of tune shift between the Vlasov approach using both
dipolar and quadrupolar forces and the PIC method.
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An excellent agreement of tune shift between the Vlasov approach using both
dipolar and quadrupolar forces and the PIC method.

The instability growth rate from PIC has similar behaviour to the instability
growth rate from Vlasov and macro-particle simulations using the linear model
of e-cloud.
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An excellent agreement of tune shift between the Vlasov approach using both
dipolar and quadrupolar forces and the PIC method.

The instability growth rate from PIC has similar behaviour to the instability
growth rate from Vlasov and macro-particle simulations using the linear model
of e-cloud.

The static non-linear map has a stabilizing effect on the instability growth rate
for low e-cloud strengths and the behaviour is sl/ight/y more similar to the PIC
instability growth rate.
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Chromaticity in Vlasov
Chromaticity is included in Vlasov together with the detuning caused by
e-cloud forces:
NP

AQ(z,0) = Q6+ Y A" (13)
n=0
which is included in the phase shift term A® used in the ansatz of the
distortion Ag:

oo oo

D, O, 7,6, 1) = €70 Y~ (U )PTANIN " R0 (14)
p=—00 I=—oc0
Equation to solve:
oAV oAV OAV _ngo(r) dfy [2Jx R coh
ot wo(Qxo+AQ(r, ¢)) 0. +ws 96 " oy i 00 S nOxF"(z,t)

(15)
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The macro-particle simulation results follow the
behaviour of the worst mode from Vlasov.
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Good agreement also for low and positive chromaticity.
The instability growth rates are lower compared to chromaticity -5




Chromaticity = 15
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Good agreement when only dipolar forces are included
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The tune shift from macro-particle simulations does not follow the worst mode,
but always follow an existing Vlasov mode.
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The tune shift from macro-particle simulations does not follow the worst mode,
but always follow an existing Vlasov mode.

Instabilities in the macro-particle simulations for e-cloud strenghts <1.8 are
damped.
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The tune shift from macro-particle simulations does not follow the worst mode,
but always follow an existing Vlasov mode.

Instabilities in the macro-particle simulations for e-cloud strenghts <1.8 are
damped.

This is not true for the VIasov modes.
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® The linear model can be put into the Vlasov equation, which can be
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tracking code for benchmarking.

® The instability modes found by Vlasov agree well with macro-particle
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Summary and Conclusions

® A linear model of e-cloud forces including both dipolar and quadrupolar
forces have been developed.

® The linear model can be put into the Vlasov equation, which can be
solved for instability modes.

® The linear model can also be put into a conventional macro-particle
tracking code for benchmarking.

® The instability modes found by Vlasov agree well with macro-particle
simulation results using the same linear model for negative and low
chromaticity.

® For high chromaticity, the mode visible in the macro-particle simulations
are among the unstable Vlasov modes, but is not the worst.

® Currently checks with impedance driven instabilities are being done to
further study this behaviour.
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Thank you for your attention!




e-cloud in Vlasov Equation - quadrupolar forces

—s Assume time dependence contained in ¢/
— transverse Fourier decomposition (angle 6y)

Anstatz of Av: —jpAd(r,¢)

— extract phase shift term e

— longitudinal Fourier decomposition (angle ¢)

D, O 1, b, 8) = €70 Y~ £2(U)PTANI N Re()eni? (16)

p=—o00 |I=—o00

where the unknown terms are Q and 7”(J,) and R/ (r).

Choose A® in the phase shift term so that: aaA_q) = _OAQu(r ) (17)
@ Ws
The total detuning from e-cloud forces and chromaticity can be divided into
transverse detuning with longitudinal amplitude, AQg, and head-tail phase
shift, AQ¢>:
AQ(z,0) = AQ(r,¢) = Q6 + 30,7 Avz" = AQR(r) + AQs(r, ¢)




Solving the linerized Vlasov Equation

oAN oAV 27ANY) ngo(r) dfy [2JR . coh
“ar x| A ’ (f) s = - TR HXFX ) t
P wo(Quo+AQ(r, 9)) 0, +w 9 ooy a0\ Qe sin (z,t)
(18)
Using the ansatz of the distortion:
AY(Je, O, 1,0, 1) = €7 N £2(L )P BN N R (eI (19)

p=—00 I=—o0
after an additional decomposition of the radial functions
Ri(r) = Wi(r) Z:;O bimfim where fin(r) are orthogonal and W(r) is arbitrary.

The linerized Vlasov Equation now becomes an eigenvalue problem:
b/m(Q - QXOWO - lws) = Z(M/m,/’m’ + I\7|/m,/’m’)b/’m’ (20)

I'm’

Unkowns in red and terms including electron cloud forces in green

Solved by computing the matrices My, y/ny and I\~/|,,,,7,/m/ and solve for
"eigenvalue” Q and mode b, using standard linear algebra packets
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Discrepancy between simulations results

growth rate (1]
.

As chromaticity increases the vlasov mode for medium impedance strength is

Qp=0.0

instabilty fit of MP

o1 o 04
impedance strength

1

growth rate .

o1

o1

04
impedance strength

o 04
impedance strength

growth rate [':]

03 04
impedance strength

03 04
impedance strength

no longer visible in the macroparticle simulations results.
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