# Electron cloud instability in J-PARC simulations

# 2022.9.27, ECLOUD22

J-PARC/KEK <u>M. Tomizawa</u> (Slow Extraction-G) R.Muto, T. Toyama, A. Kobayashi, M. Yoshii, Y.Sugiyama J-PARC/JAEA F. Tamura

- 1. Instability observed in slow extraction operation
- 2. Longitudinal beam simulation in beam debunching
- 3. Electron cloud generation simulation (preliminary)
- 4. Summary and future plan

# J-PARC Main Ring (MR) proton beam



RF is turned off for debunching before slow extraction at 30GeV

## Beam Instability at debunch timing

### Currently Limiting SX beam intensity (large beam loss for SX)



The timing the instability seen is  $\sim$ 60ms from the debunch start (P3) corresponding to time adjacent beams overlap

Our current strategy to mitigate the instability with e-cloud is to improve the longitudinal beam structure

Microwave instability Longitudinal Keil-Schnell (K-S) criterion

$$\left|\frac{Z_L(n\omega_0)}{n}\right| \le F \cdot \frac{|\eta|\beta^2 E_0/e}{I_p} \left(\frac{\Delta p}{p}\right)_{FWHM}^2,$$

Increase longitudinal emittance

Phase offset injection 2 step debunch

To reduce ZLs are also important if possible

# **Current Mitigations of Beam Instability**

• Beam injected to MR RF buckets with a phase offset (effective up to 50 kW from 30kW)



 2-step (voltage) debunch in combination with the phase offset injection Newly introduced from Dec., 2020

ramped up the beam power for the user run from 50kW to 64.6 kW.







# **Other Mitigations**

 weaken H,V chromaticity correction (negative value) during debunching (direct transverse instability mitigation)

J-PARC slow extraction needs a small Qx' for high slow extraction efficiency This manipulation to move Q' quickly is limited by Q' correction PSs

-> partially works to suppress the instability, but not enough



 RF Phase jump before debunching (increase momentum spread) could not improved in a preliminary test

Plans

- to introduce slippage change lattice during debunch to suppress L-instability
- $\cdot$  to introduce VHF cavity to increase L-emittance (large cost  $\sim$ 2M\$)

## Longitudinal coupling impedance

MR longitudinal impedances have been derived by

- stretched wire method measurements RF cavities (new)
   Gap-shorted RF cavities (new)
   FX kickers ( > 1GHz) (new)
   Injection kickers (as before)
   correction kickers (as before)
   SX septa (as before)
- CST (CST Studio Suite) simulations
   FX thin magnetic septa (till 2021) (new)
   FX eddy current septa (from 2022) (new)

(by T. Toyama, A. Kobayashi, M. Yoshii, et al.)

### Total MR L-impedances (RF, FX-MS, SX-MS, FX-KI, INJ-KI, COR-KI, Resistive Wall)

Total impedances from interpolated data and resistive wall

f (MHz)

100 FX septa 50 • case-1: 5.2s cycle, 2021 operation [ZL/n] (Ω) 5 RF cavities ON, 6 cavities shorted old FXMS MR-LImpedance\_20220131\_001.nb -100\_0 200 400 600 800 1000 f (MHz) Total impedances from interpolated data and resistive wall 10 RF case-2: 5.2s cycle, JFY 2022 operation planned 5 RF cavities ON, 6 cavities shorted |ZL/n| (Ω) new FXMS MR-LImpedance\_20220131\_002.nb -10 200 400 1000 600 800 f (MHz) Total impedances from interpolated data and resistive wall 10 • case-3: 4.2s cycle, JFY 2022 operation planned 8 RF cavities ON, 3 cavities shorted new FXMS MR-Limpedance 20220131 003.nb MR impedance models have been established -10 200 1000 400 600 800

8

#### Initial proton beam distribution before debunching

Tomography projection (60kW)

-1.5

-150

-100

Phase[deg]

### 2021/05/13 Shot#16260 bunch0-7 (P3 timing)



50

100

150

1.5

-150

-100

-50

0

100

150

from FF (9) and FB(8,10) to FB(8,9,10) only

## Longitudinal tracking Simulation in Longitudinal impedance (ZL)

- Time domain
- ZL: total ring longitudinal impedances
- Wake function

W' 
$$(z < 0) = \frac{2}{\pi} \int_0^\infty \text{Re}Z_L(\omega) \cos(\omega z / c) d\omega$$
 CHAO text:

- Beam loading voltage is derived from W' and beam distribution
- Longitudinal kick at one point by the beam loading voltage
- Proton space charge force can be implemented directly as beam loading voltage

w/o 2step debunch simulation (60kW beam,6.5x10^13ppp)



The spike structure is improved for 2022 ZL

w/ 2step debunch simulation
(60kW beam,6.5x10^13ppp)

The spike structure is improved for 2step debunch for 2021 ZL







# **Electron Cloud Generation Simulation**

Previous work

K. Ohmi

Bruce Yee-Rendon

- · IOP Conf. Series: Journal of Physics Conf. Series 874(2017)012065 (by his code)
- Proc. of PASJ 2017, p.197 (by pyECLOUD)

<u>Current work</u> Independent simple code

- Axial symmetry of proton, electron beam distribution in a cylindrical beam duct
- Transverse proton beam distribution is Gaussian and no effect from electron cloud
- Longitudinal proton beam distribution can be flexible but frozen in the simulation (no synchrotron oscillation)
- · Electron is initially generated by a residual gas ionization from proton collision
- Secondary electron has zero energy initially (approximately)
- No external field
- Space charge effect by electron cloud has been implemented but currently not completed

current simulation parameters:

- Ionization cross-section: 2Mb, vacuum pressure: 1x10^-6Pa, temperature: 300K
- Proton beam beam size:  $\sigma_{rms} = 1.79 \text{ mm}, r_{max} = 5^* \sigma_{rms}$
- beam duct r=70mm
- radial mesh 200
- longitudinal resolution 1ns



SEY[E]=  $\delta_{max}$  \*1.11\*(E/E<sub>max</sub>)^-0.35\*(1 - Exp[-2.3\*(E/E<sub>max</sub>)^1.35]) Ng, Textbook



#### 1.721MHz (f<sub>rv</sub>\*h) Proton beam half-sine chain, 6x10^13 ppp

Electron generation peak is delayed from proton peak (trailing edge multipactering)

Proton beam half-sine chain, 6x10^13 ppp 10MHz to 100MHz every 1MHz Maximum electron line density in 8/9 turn



E-cloud is enhanced at 40MHz and its harmonics



E-cloud simulated in 5 turns (6x10^13ppp)

Proton distribution L-simulation w/ZL: 2022,5.2s cycle 2 step debunch Initial beam bunch2 24000 turn from FT start

#### This distribution is used for all bunches



The e-cloud build-up in one turn is moderate. E-cloud enhancement by the micro-structure is not clear The kicker gap rather resets the e-cloud



E-cloud simulated in 5 turns (6x10^13ppp)

Proton distribution L-simulation w/ ZL: 2022,5.2s cycle 2 step debunch Initial beam bunch0 24000 turn from FT start

This distribution is used for all bunches



The e-cloud build-up in one turn is large! The kicker gap rather resets the e-cloud

#### Electron space charge of e-cloud generation (very preliminary)



## Summaries and plans

### What enhances e-cloud in debunching process for J-PARC SX ?

- Electron cloud simulation assuming axial symmetry has been conducted to know a rough e-cloud behavior
- E-cloud is strongly enhanced at 40MHz and its harmonics for half-sine chain distribution
- According to the current e-cloud simulation using proton distributions obtained by longitudinal beam simulation with MR ZL, e-cloud seems to be enhanced not by the micro-structure, by a macro-structure of proton beam, though further check and study is necessary.
- use realistic SEY and SE-electron energy spectra
- · Measured wall current data of proton beam will be used for the e-cloud simulation.
- Relation of beam overlap degree in adjacent beams and e-cloud will be examined.
- · Electron space charge may play a important role for a high electron line density
- More accurate algorithm will be expected to be implemented.

More realistic/reliable simulation could be done using existing codes (like PyECLOUD) developed by e-cloud experts

Any comments or suggestions from e-cloud experts are welcome! masahito.tomizawa@kek.jp

# SEY

by Toyama



# SEY

by Toyama

