Electron cloud incoherent effects

Konstantinos Paraschou, Giovanni Iadarola Accelerator and Beam Physics group, CERN

Acknowledgements: G. Arduini, H. Bartosik, R. De Maria, S. Fartoukh, L. Giacomel, S. Kostoglou, L. Mether, E. Métral, Y. Papaphilippou, G. Rumolo, L. Sabato, M. Schwinzerl, G. Skripka, F. Van der Veken

ECLOUD'22 Workshop
Italy, La Biodola Bay, Isola d'Elba
26 September 2022

Outline

1. Introduction
2. Observations in LHC during Run 2
3. Progress in simulations
a) Description of e-cloud interaction
b) Simulation results

Outline

1. Introduction
2. Observations in LHC during Run 2
3. Progress in simulations
a) Description of e-cloud interaction
b) Simulation results

Buildup example

- E-cloud buildup is a multi-bunch effect.
- Incoherent e-cloud effect concerns the motion of single beam particles as they encounter these electrons.
- Single particles stay inside the same bunch

Pinch

- Motion of electrons is very complex
- Complex electron densities \rightarrow complex induced forces.
- Betatron oscillations: up-down, left-right
- Synchrotron oscillations: back-forth in "time"
- Non-linear forces + betatron/synchrotron oscillations can lead to oscillation amplitude increase \rightarrow losses + emittance growth.

Outline

1. Introduction
2. Observations in LHC during Run 2
3. Progress in simulations
a) Description of e-cloud interaction
b) Simulation results

Motivation

Losses come from:

- Luminosity burn-off that decreases gradually.
- Continuous rate of additional losses.

Filling scheme

Standard 2018 Physics filling scheme (2556 bunches) [lpc.web.cern.ch]

Beam is composed of repeating patterns (trains):

- 2×48 bunches,
- 3×48 bunches.

Magnification:

All bunch-by-bunch losses

Global picture: Fairly constant loss rate (Corrected for burn-off).

- Grows from head to tail of each train

Number of BBLR interactions

Number of Beam-Beam Long-Range interactions changes for each bunch in the filling scheme.

"Train"

- Group 1: Few BBLR, reduced e-cloud effects
- Group 2: Max BBLR, reduced e-cloud effects
- Group 3: Max BBLR, stronger e-cloud effects
- Group 4: Few BBLR, stronger e-cloud effects

Example \#1: Physics fills

- Bunch-by-bunch pattern emerges
- Reminds of e-cloud buildup behaviour.
- Beam-beam effects alone cannot explain behaviour

Example \#2: Crossing angle

Typical physics fill:

Special test:

- A reduced crossing angle typically enhances BBLR interactions.
- In this case, it enhances the e-cloud pattern losses.

Example \#3: Buildup simulations in Inner Triplet quadrupoles

One beam:

Two beams:

- One beam: In the small 200 ns between batches, the electron cloud decays significantly.
- Two beams: Beams are not synchronized and the e-cloud does not decay.

Example \#3: Buildup simulations in Inner Triplet quadrupoles

One beam:

Two beams:

The bunch-by-bunch pattern of the losses resembles the e-cloud buildup simulations of the Inner Triplet quadrupoles.

Example \#4: Measurements with different betatron functions

$\beta^{*}=65 \mathrm{~cm}, \varphi=120 \mu \mathrm{rad}$
Large ATS telescope ${ }^{1} \rightarrow$
\rightarrow enhancement of arc beta functions

$$
\beta^{*}=30 \mathrm{~cm}, \varphi=150 \mu \mathrm{rad}
$$

Moderate ATS telescope

- Decreasing β in the inner triplet quadrupoles should reduce effect of the e-cloud in the inner triplet.
- Increasing β in arcs should enhances e-cloud effect:
no significant losses.

Summary - Observations

Electron cloud related losses are enhanced when:

1. reducing β^{*} (increasing β in IT)
2. reducing crossing angle (changes closed orbit in IT)
3. Two beams are present (enhanced buildup in IT) but not when:
4. Increasing β in arcs

All observations point to the Inner Triplet Quadrupoles.

Outline

1. Introduction
2. Observations in LHC during Run 2
3. Progress in simulations
a) Description of e-cloud interaction
b) Simulation results

Introduction to simulations

[G. Iadarola, CERN-ACC-NOTE-2019-0033]

- Complex time-dependent e-cloud density \rightarrow complex time-dependent forces
- Slow incoherent effects \rightarrow e-cloud can be re-used = weak-strong approximaton (no self-consistency)
- But: e-cloud potential (PIC) is defined on a 3D grid. Needs to be interpolated.

Symplecticity

- Numerical methods in solving Hamiltonian systems can break the symplectic condition, making them less accurate at long timescales. (Millions of turns)
- Typically important to preserve symplecticity, even at the expense of accuracy.

- Interpolation scheme should guarantee symplecticity.

$$
\begin{aligned}
& \quad x, y, \tau \mapsto x, y, \tau \\
& \quad \text { In our case, } \quad \frac{\partial^{2} \phi}{\text { symplecticity: }} \frac{\partial^{2} \phi}{\partial x \partial y}=\frac{p_{x}}{\partial y \partial x} \mapsto p_{x}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial x}(x, y, \tau) \\
& p_{y} \mapsto p_{y}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial y}(x, y, \tau) \\
& \text { Linear interpolation is not symplectic. } p_{\tau} \mapsto p_{\tau}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)
\end{aligned}
$$

Tricubic interpolation

Given a regular 3D grid of any function $\mathrm{f}^{\mathrm{jjk}}$, we interpolate locally in a way that the following quantities are continuous globally.

$$
\left\{f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial x \partial z}, \frac{\partial^{2} f}{\partial y \partial z}\right\}
$$

Lekien and Marsden* proved that it is possible to meet this condition by using a tricubic interpolation scheme.

$$
f(x, y, z)=\sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{i j k} x^{i} y^{j} z^{k}
$$

The coefficients $\mathrm{a}_{\mathrm{ijk}}$ change from cell to cell but required quantities stay continuous across the cells.

- Analytical derivatives for interaction.
*F. Lekien and J. Marsden, "Tricubic interpolation in three dimensions". https://doi.org/10.1002/nm2.1296

Issue with PIC potential

- PIC simulation suffers from macroparticle noise.
- Can be reduced by averaging many simulations.

Averaging 4000 reveals the physical structures in the induced forces.

Issue with cubic interpolator

- Close look reveals irregularities from Tricubic interpolation.
- Inaccuracies are correlated with discontinuity of second derivative accross cells.

$$
\mathcal{E}_{x}^{i j k}=\left.\frac{\partial e_{x}^{\mathrm{int}}}{\partial x}\right|_{x \rightarrow x_{i}^{+}}-\left.\frac{\partial e_{x}^{\mathrm{int}}}{\partial x}\right|_{x \rightarrow x_{i}^{-}}=-2 \frac{\partial^{3} \phi}{\partial x^{3}}\left(x_{i}, y_{j}, \tau_{k}\right) \Delta x+O\left(\Delta x^{3}\right)
$$

Refinement of potential

We found that we can treat our potential by:

1. Interpolate charge density on an auxilliary finer grid (by factor h).
2. Recalculate φ and derivatives in the finer grid.
3. Store recalculated φ and derivatives on original grid. $\Delta x_{\text {refined }}=\frac{\Delta x}{h}$

Minimal expense on memory and speed (performed during pre-processing) Proved analytically that error becomes:

$$
\mathcal{E}_{x, \text { refined }}^{i j k}=-2 \frac{\partial^{3} \phi}{\partial x^{3}}\left(x_{i}, y_{j}, \tau_{k}\right) \frac{\Delta x}{h^{2}}+O\left(h^{-4} \Delta x^{3}\right)
$$

Complete mitigation of the irregularities.

Quick recap

- Analytical form of e-cloud kick.
- Used a high-order interpolation scheme (tri-cubic) to preserve symplecticity everywhere in phase space.
- Averaged multiple Particle-In-Cell e-cloud simulations to reduce macroparticle noise in the interpolated data.
- Solved Poisson's equation in a finer auxiliary grid (done only once) to improve performance of the interpolation scheme.

$$
\begin{aligned}
& x, y, \tau \mapsto x, y, \tau \\
& p_{x} \mapsto p_{x}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial x}(x, y, \tau) \\
& p_{y} \mapsto p_{y}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial y}(x, y, \tau) \\
& p_{\tau} \mapsto p_{\tau}-\frac{q L}{\beta_{0} P_{0} c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)
\end{aligned}
$$

General procedure for the simulation

E-cloud setup

E-cloud exists across the full length of the LHC beam pipe.
Different magnetic fields lead to completely different e-clouds.
Most significant contributors:

1. E-cloud in arc dipoles (MB) (66%)
2. E-cloud in arc quadrupoles (MQ) (7\%)

We place one interaction for each three dipoles and each quadrupole.

- Betatron and dispersion functions stay the same between each cell.
- Approximate SEY as uniform everywhere. Large fluctuations in reality.
- Effect from saturated e-cloud.

E-cloud setup

- One MB e-cloud per half-cell
$\rightarrow 46$ interactions per arc
$\rightarrow 368$ interactions.
- One MQ e-cloud per half-cell
$\rightarrow 45$ interactions per arc
$\rightarrow 360$ interactions.

Tracking time per e-cloud type (~ 360 interactions) is about as much as rest of the lattice (11k tracking elements).

E-cloud setup

- Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
- Quadrupoles: Small dependence on bunch intensity, large e- densities close to beam.

E-cloud setup

Nominal intensity (1.2 $\left.10^{11} \mathrm{p} / \mathrm{bunch}\right)$

Reduced intensity ($0.610^{11} \mathrm{p} / \mathrm{bunch}$)

- Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
- Quadrupoles: Small dependence on bunch intensity, large e- densities close to beam.

Simulation Parameters

Typical LHC at injection, 2018

> Bunch intensity : 1.2010^{11} protons
> Energy : $450 \mathbf{G e V}$

Chromaticity: 15/15
Octupole magnet's current : 40 A
Bunch spacing : 25 ns
Transverse norm emittances : $2 \mu \mathrm{~m} / 2 \mu \mathrm{~m}$
R.M.S. bunch length : 0.09 m

Betatron tunes : 62.270/60.295
RF voltage : 6 MV

The three primary collimators (TCP) in IR7 (as black absorbers) are included in the lattice at their typical configuration (5.7 "collimation" $\sigma \rightarrow 7.5$ beam σ).

There is no uncorrected linear coupling, magnet field imperfections, magnet misalignments or beam-beam interactions in the lattice.

Secondary Emission Yield (SEY) - Intensity scan

- Larger Secondary electron Emission Yield (of beam pipe) \rightarrow \rightarrow stronger e-cloud \rightarrow less DA
- Dipoles (MB): strong dependence with bunch intensity, correlated to e^{-} density close to the beam.
- Quadrupoles (MQ): weak dependence with bunch intensity

Long simulations (10M turns \rightarrow 15min beam time)

Incoherent effects in the LHC are typically very slow processes. Need to simulate long timescales. Recent advances (SixTrackLib/XSuite) allow the direct simulation of particle distributions with GPUs for such times.

Simulation using a V100 GPU took 1 week / 20000 particles / $\mathbf{1 0}$ M turns. Specific study used 6 GPUs at the same time to simulated more particles.

In long term simulations we observe:

- small increase of losses
- horizontal emittance growth,
- vertical emittance growth, when e-clouds are included.
Experimental observations show emittance growth in the same order of magnitude. For quantitative comparisons we have planned dedicated MDs in Run 3.

Long simulations (10 M turns $\rightarrow \mathbf{1 5 m i n}$ beam time)

MB (Dipoles):

- Losses stronger at reduced intensity.
- Emittance growth only at reduced intensity.
- Vertical growth larger than horizontal.

MQ (Quadrupoles):

- Losses across all intensities.
- Emittance growth at all intensities.
- Similar growths in both horizontal and vertical.

Effects strongly correlated with the e^{-} density close to the beam.

Reminder:

- MB show large densities around the beam for reduced intensities,
- MQ for all intensities.

Conclusion and Remarks

Observations:

- Electron cloud in the insertion region quadrupoles is significant. Reduces integrated luminosity.

Simulations:

- We can do particle tracking simulations with arbitrarily complex e-clouds in arbitrarily complex lattices for millions of turns.
- Simulated simplified scenario at injection energy. Interplay with non-linear magnetic imperfections expected.
- Simulations have reproduced the expected qualitative behavior.
- Very long simulation timescales (several minutes) are in reach. (Using GPUs)

Outlook for the future:

- Comparison with experimental measurements needs specialized tests. \rightarrow Soon to be carried out in the LHC.
- Simulate scenario during collisions: Strong electron clouds in the Insertion Region quadrupoles + strong beam-beam effects.

Thank you for your attention!
Konstantinos Paraschou

Backup slides

Spare slide

The RF bucket

- DA simulations done for off-momentum particles $\left(p_{\tau}=5.510^{-4}\right)$.
- FMA simulations done for on-momentum particles ($p_{\tau}=0$).
- Long-term tracking simulations with particles across the full bucket.
- Work in progress: FMA with off-momentum particles.

Frequency Map Analysis - Nominal intensity ($0.6 \mathbf{1 0}^{11} \mathrm{p} / \mathrm{b}$)

Frequency Map Analysis - Reduced intensity ($0.6 \mathbf{1 0}^{11} \mathrm{p} / \mathrm{b}$)

Reduced intensity
Dipoles (MB):
\rightarrow larger tune-shift
\rightarrow more resonances

Quadrupoles (MQ):
\rightarrow large tune-shift
\rightarrow more resonances

Particles are on-momentum, picture is not yet complete. Work in progress to try identify synchro-betatron resonances.

Tune scan

Why symplectic?

Symplecticity is a property closely related to Hamiltonian mechanics and the associated integrals of motion. If the numerical method for solving Hamilton's differential equations is not symplectic, e.g. $4^{\text {th }}$ order Runge-Kutta method, quantities which would otherwise stay constant will grow in time.

Consider the Hamiltonian: $H=\frac{p_{1}^{2}}{2}+\frac{p_{2}^{2}}{2}+\phi\left(q_{1}, q_{2}\right)$ with $\phi\left(q_{1}, q_{2}\right)=e^{q_{1}-q_{2}}$
These quantities are conserved: $J_{1}=\left(p_{1}-p_{2}\right)^{2}+4 e^{q_{1}-q_{2}}$, (along with the Hamiltonian)

$$
I_{1}=\frac{p_{1}-p_{2}+\sqrt{J_{1}}}{p_{1}-p_{2}-\sqrt{J_{1}}} \exp \left(\sqrt{J_{1}} \frac{q_{1}+q_{2}}{p_{1}+p_{2}}\right)
$$

We can numerically solve the equations of motion with
the method: $\quad q_{1}^{f}=q_{1}^{i}+p_{1} \cdot \Delta t$
$q_{2}^{f}=q_{2}^{i}+p_{2} \cdot \Delta t$
$p_{1}^{f}=p_{1}^{i}-\frac{\partial \phi}{\partial q_{1}}\left(q_{1}^{f}, q_{2}^{f}\right) \cdot \Delta t$
$p_{2}^{f}=p_{2}^{i}-\frac{\partial \phi}{\partial q_{2}}\left(q_{1}^{f}, q_{2}^{f}\right) \cdot \Delta t$

- The potential is discretized on a grid and the two interpolation methods are used.

Why symplectic?

Non-symplectic method: Use (bi)linear interpolation on the derivatives

$$
\text { of } \phi\left(q_{1}, q_{2}\right)=e^{q_{1}-q_{2}}
$$

Symplectic method: Use (bi)cubic interpolation on $\phi\left(q_{1}, q_{2}\right)=e^{q_{1}-q_{2}}$.

- The relative error on the integrals of motion does not grow with a symplectic method,
- While it grows for non-symplectic methods.

Impact of tricubic interpolation irregularities

- Simple tracking of linear 2D phase space rotation and an e-cloud symplectic kick.
- Very important to minimize irregularities.
- By reducing them, there is significant impact on the particle

 motion.

Induced forces

Dipole magnet:

Quadrupole magnet:

