Electron cloud incoherent effects

Konstantinos Paraschou, Giovanni Iadarola Accelerator and Beam Physics group, CERN

Acknowledgements: G. Arduini, H. Bartosik, R. De Maria, S. Fartoukh, L. Giacomel, S. Kostoglou, L. Mether, E. Métral, Y. Papaphilippou, G. Rumolo, L. Sabato, M. Schwinzerl, G. Skripka, F. Van der Veken

ECLOUD'22 Workshop Italy, La Biodola Bay, Isola d'Elba 26 September 2022

Outline

- 1. Introduction
- 2. Observations in LHC during Run 2
- 3. Progress in simulations
 - a) Description of e-cloud interaction
 - b) Simulation results

Outline

- 1. Introduction
- 2. Observations in LHC during Run 2
- 3. Progress in simulations
 - a) Description of e-cloud interaction
 - b) Simulation results

Buildup example

- E-cloud buildup is a multi-bunch effect.
- Incoherent e-cloud effect concerns the motion of single beam particles as they encounter these electrons.
- Single particles stay inside the same bunch

Pinch

- Motion of electrons is very complex
- Complex electron densities → complex induced forces.
- Betatron oscillations: up-down, left-right
- Synchrotron oscillations: back-forth in "time"
- Non-linear forces + betatron/synchrotron oscillations can lead to oscillation amplitude increase → losses + emittance growth.

Outline

- 1. Introduction
- 2. Observations in LHC during Run 2
- 3. Progress in simulations
 - a) Description of e-cloud interaction
 - b) Simulation results

Motivation

Losses come from:

- Luminosity burn-off that decreases gradually.
- Continuous rate of additional losses.

Filling scheme

Standard 2018 Physics filling scheme (2556 bunches) [lpc.web.cern.ch]

Beam is composed of repeating patterns (trains):

- 2x48 bunches,
- 3x48 bunches.

Magnification:

All bunch-by-bunch losses

Global picture: Fairly constant loss rate (Corrected for burn-off).

Grows from head to tail of each train

Number of BBLR interactions

Number of Beam-Beam Long-Range interactions changes for each bunch in the filling scheme.

- Group 1: Few BBLR, reduced e-cloud effects
- Group 2: Max BBLR, reduced e-cloud effects
- Group 3: Max BBLR, stronger e-cloud effects
- **Group 4**: Few BBLR, stronger e-cloud effects

Example #1: Physics fills

- Bunch-by-bunch pattern emerges
- Reminds of e-cloud buildup behaviour.
- Beam-beam effects alone cannot explain behaviour

Example #2: Crossing angle

- A reduced crossing angle typically enhances BBLR interactions.
- In this case, it enhances the e-cloud pattern losses.

Example #3: Buildup simulations in Inner Triplet quadrupoles

One beam:

Two beams:

- One beam: In the small 200 ns between batches, the electron cloud decays significantly.
- Two beams: Beams are not synchronized and the e-cloud does not decay.

Example #3: Buildup simulations in Inner Triplet quadrupoles

The bunch-by-bunch pattern of the losses resembles the e-cloud buildup simulations of the Inner Triplet quadrupoles.

Example #4: Measurements with different betatron functions

$$\beta^* = 65$$
 cm, $\phi = 120$ µrad
Large ATS telescope¹ \rightarrow
 \rightarrow enhancement of arc beta functions

 β * = 30 cm, ϕ = 150 µrad Moderate ATS telescope

- Decreasing β in the inner triplet quadrupoles should reduce effect of the e-cloud in the inner triplet.
- Increasing β in arcs should enhances e-cloud effect: no significant losses.

Summary - Observations

Electron cloud related losses are enhanced when:

- 1. reducing β^* (increasing β in IT)
- 2. reducing crossing angle (changes closed orbit in IT)
- 3. Two beams are present (enhanced buildup in IT) but not when:
- 4. Increasing β in arcs

All observations point to the Inner Triplet Quadrupoles.

Outline

- 1. Introduction
- 2. Observations in LHC during Run 2
- 3. Progress in simulations
 - a) Description of e-cloud interaction
 - b) Simulation results

Introduction to simulations

[G. Iadarola, CERN-ACC-NOTE-2019-0033]

14.5
$$x, y, \tau \mapsto x, y, \tau$$

14.0 $p_x \mapsto p_x - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial x}(x, y, \tau)$
13.5 $p_x \mapsto p_x - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial y}(x, y, \tau)$
12.5 $p_y \mapsto p_y - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial y}(x, y, \tau)$
11.5 $p_\tau \mapsto p_\tau - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)$

$$ho o \phi o rac{\partial \phi}{\partial x} \dots$$

- Complex time-dependent e-cloud density → complex time-dependent forces
- Slow incoherent effects → e-cloud can be re-used = weak-strong approximaton (no self-consistency)
- But: e-cloud potential (PIC) is defined on a 3D grid. Needs to be interpolated.

Symplecticity

- Numerical methods in solving
 Hamiltonian systems can break the
 symplectic condition, making them
 less accurate at long timescales.
 (Millions of turns)
- Typically important to preserve symplecticity, even at the expense of accuracy.

Interpolation scheme should guarantee symplecticity.

In our case, symplecticity:
$$\frac{\partial^2 \phi}{\partial x \partial y} = \frac{\partial^2 \phi}{\partial y \partial x}$$

• Linear interpolation is not symplectic.

$$x, y, \tau \mapsto x, y, \tau$$

$$p_{x} \mapsto p_{x} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial x}(x, y, \tau)$$

$$p_{y} \mapsto p_{y} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial y}(x, y, \tau)$$

$$p_{\tau} \mapsto p_{\tau} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)$$

Tricubic interpolation

Given a regular 3D grid of any function f^{ijk}, we interpolate locally in a way that the following quantities are continuous globally.

$$\left\{f, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial^2 f}{\partial x \partial y}, \frac{\partial^2 f}{\partial x \partial z}, \frac{\partial^2 f}{\partial y \partial z}\right\}$$

Lekien and Marsden* proved that it is possible to meet this condition by using a tricubic interpolation scheme.

$$f(x, y, z) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} a_{ijk} x^{i} y^{j} z^{k}$$

The coefficients a_{ijk} change from cell to cell but required quantities stay continuous across the cells.

Analytical derivatives for interaction.

^{*}F. Lekien and J. Marsden, "Tricubic interpolation in three dimensions". https://doi.org/10.1002/nm2.1296

Issue with PIC potential

One simulation

4000 simulations

- PIC simulation suffers from macroparticle noise.
- Can be reduced by averaging many simulations.

Averaging 4000 reveals the physical structures in the induced forces.

Issue with cubic interpolator

- Close look reveals irregularities from Tricubic interpolation.
- Inaccuracies are correlated with discontinuity of second derivative accross cells.

$$\mathcal{E}_{x}^{ijk} = \left. \frac{\partial e_{x}^{\text{int}}}{\partial x} \right|_{x \to x_{i}^{+}} - \left. \frac{\partial e_{x}^{\text{int}}}{\partial x} \right|_{x \to x_{i}^{-}} = -2 \frac{\partial^{3} \phi}{\partial x^{3}} (x_{i}, y_{j}, \tau_{k}) \Delta x + O(\Delta x^{3})$$

Refinement of potential

We found that we can treat our potential by:

- 1. Interpolate charge density on an auxilliary finer grid (by factor h).
- 2. Recalculate φ and derivatives in the finer grid.
- 3. Store recalculated φ and derivatives on original grid. $\Delta x_{\text{refined}} = \frac{\Delta x}{h}$

Minimal expense on memory and speed (performed during pre-processing) Proved analytically that error becomes:

$$\mathcal{E}_{x,\text{refined}}^{ijk} = -2\frac{\partial^3 \phi}{\partial x^3} (x_i, y_j, \tau_k) \frac{\Delta x}{h^2} + O(h^{-4} \Delta x^3)$$

Complete mitigation of the irregularities.

Quick recap

- Analytical form of e-cloud kick.
- Used a high-order interpolation scheme (tri-cubic) to preserve symplecticity everywhere in phase space.
- Averaged multiple Particle-In-Cell e-cloud simulations to reduce macroparticle noise in the interpolated data.
- Solved Poisson's equation in a finer auxiliary grid (done only once) to improve performance of the interpolation scheme.

$$x, y, \tau \mapsto x, y, \tau$$

$$p_{x} \mapsto p_{x} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial x}(x, y, \tau)$$

$$p_{y} \mapsto p_{y} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial y}(x, y, \tau)$$

$$p_{\tau} \mapsto p_{\tau} - \frac{qL}{\beta_{0}P_{0}c} \frac{\partial \phi}{\partial \tau}(x, y, \tau)$$

Next:

- Direct tracking simulation results of the incoherent effect of electron clouds in the main dipole and quadrupole magnets of the LHC at injection energy.
- Simulations were performed with SixTrackLib (predecessor to XSuite) using GPUs and including the full thin lattice model of the LHC.
- In SixTrackLib/XSuite, protons are tracked through each element of the lattice using symplectic maps.

General procedure for the simulation

E-cloud exists across the full length of the LHC beam pipe.

Different magnetic fields lead to completely different e-clouds.

Most significant contributors:

- 1. E-cloud in arc dipoles (MB) (66%)
- 2. E-cloud in arc quadrupoles (MQ) (7%)

We place one interaction for each three dipoles and each quadrupole.

- Betatron and dispersion functions stay the same between each cell.
- Approximate SEY as uniform everywhere. Large fluctuations in reality.
- Effect from saturated e-cloud.

- One MB e-cloud per half-cell
- → 46 interactions per arc
- \rightarrow 368 interactions.
- One MQ e-cloud per half-cell
- → 45 interactions per arc
- \rightarrow 360 interactions.

Tracking time per e-cloud type (~360 interactions) is about as much as rest of the lattice (11k tracking elements).

- Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
- Quadrupoles: Small dependence on bunch intensity, large e⁻ densities close to beam.

Nominal intensity (1.2 10¹¹ p/bunch) Reduced intensity (0.6 10¹¹ p/bunch) 14.5 14.5 14.0 4 14.0 13.5 [_E _H/₂ 13.0] 12.5 d log₁₀ d log₁₀ 12.0 log₁₀ 13.5 E y [mm] اع.0 _ق 11.5 -411.5 11.0 11.0 -5.02.5 -2.50.0 5.0 -5.0-2.50.0 2.5 5.0 *x* [mm] *x* [mm] Quadrupoles y [mm] 2 y [mm] 0 -10-10**-**5 5 10 *x* [mm] *x* [mm]

- Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
- Quadrupoles: Small dependence on bunch intensity, large e⁻ densities close to beam.

Simulation Parameters

Typical LHC at injection, 2018

Bunch intensity: 1.20 10¹¹ protons

Energy: 450 GeV

Chromaticity: 15/15

Octupole magnet's current: 40 A

Bunch spacing: 25 ns

Transverse norm emittances : 2 μm/ 2 μm

R.M.S. bunch length: 0.09 m

Betatron tunes: 62.270/60.295

RF voltage: 6 MV

The three primary collimators (TCP) in IR7 (as black absorbers) are included in the lattice at their typical configuration (5.7 "collimation" $\sigma \rightarrow 7.5$ beam σ).

There is **no** uncorrected linear coupling, magnet field imperfections, magnet misalignments or beam-beam interactions in the lattice.

Secondary Emission Yield (SEY) - Intensity scan

- Larger Secondary electron Emission
 Yield (of beam pipe) →

 stronger a cloud → less DA
 - \rightarrow stronger e-cloud \rightarrow less DA
- Dipoles (MB): strong dependence with bunch intensity, correlated to edensity close to the beam.
- Quadrupoles (MQ): weak dependence with bunch intensity

Long simulations (10M turns \rightarrow 15min beam time)

Incoherent effects in the LHC are typically very slow processes. Need to simulate long timescales.

Recent advances (SixTrackLib/XSuite) allow the direct simulation of particle distributions with GPUs for such times.

Simulation using a V100 GPU took 1 week / 20 000 particles / 10 M turns. Specific study used 6 GPUs at the same time to simulated more particles.

In long term simulations we observe:

- small increase of losses
- horizontal emittance growth,
- vertical emittance growth,

when e-clouds are included.

Experimental observations show emittance growth in the same order of magnitude. For quantitative comparisons we have planned dedicated MDs in Run 3.

Long simulations (10M turns \rightarrow 15min beam time)

MB (Dipoles):

- Losses stronger at reduced intensity.
- Emittance growth only at reduced intensity.
- Vertical growth larger than horizontal.

MQ (Quadrupoles):

- Losses across all intensities.
- Emittance growth at all intensities.
- Similar growths in both horizontal and vertical.

Effects strongly correlated with the edensity close to the beam.

Reminder:

- MB show large densities around the beam for reduced intensities,
- MQ for all intensities.

Conclusion and Remarks

Observations:

• Electron cloud in the insertion region quadrupoles is significant. Reduces integrated luminosity.

Simulations:

- We can do particle tracking simulations with arbitrarily complex e-clouds in arbitrarily complex lattices for millions of turns.
- Simulated simplified scenario at injection energy. Interplay with non-linear magnetic imperfections expected.
- Simulations have reproduced the expected qualitative behavior.
- Very long simulation timescales (several minutes) are in reach. (Using GPUs)

Outlook for the future:

- Comparison with experimental measurements needs specialized tests.
 - → Soon to be carried out in the LHC.
- Simulate scenario during collisions: Strong electron clouds in the Insertion Region quadrupoles + strong beam-beam effects.

Backup slides

Spare slide

The RF bucket

- DA simulations done for off-momentum particles ($p_{\tau} = 5.5 \ 10^{-4}$).
- FMA simulations done for on-momentum particles ($p_{\tau} = 0$).
- Long-term tracking simulations with particles across the full bucket.
- Work in progress: FMA with off-momentum particles.

Frequency Map Analysis – Nominal intensity (0.6 10¹¹ p/b)

Frequency Map Analysis – Reduced intensity (0.6 10¹¹ p/b)

Tune scan

40

Why symplectic?

Symplecticity is a property closely related to Hamiltonian mechanics and the associated integrals of motion. If the numerical method for solving Hamilton's differential equations is not symplectic, e.g. 4th order Runge-Kutta method, quantities which would otherwise stay constant will grow in time.

Consider the Hamiltonian:
$$H=rac{p_1^2}{2}+rac{p_2^2}{2}+\phi(q_1,q_2)$$
 with $\phi(q_1,q_2)=e^{q_1-q_2}$

These quantities are conserved:
$$J_1 = (p_1 - p_2)^2 + 4e^{q_1 - q_2},$$
 (along with the Hamiltonian)
$$I_1 = \frac{p_1 - p_2 + \sqrt{J_1}}{p_1 - p_2 - \sqrt{J_1}} \exp\left(\sqrt{J_1} \frac{q_1 + q_2}{p_1 + p_2}\right)$$

We can numerically solve the equations of motion with the method: $q_1^f = q_1^i + p_1 \cdot \Delta t$

$$egin{aligned} q_1^f &= q_1^i + p_1 \cdot \Delta t \ q_2^f &= q_2^i + p_2 \cdot \Delta t \ p_1^f &= p_1^i - rac{\partial \phi}{\partial q_1}(q_1^f, q_2^f) \cdot \Delta t \ p_2^f &= p_2^i - rac{\partial \phi}{\partial q_2}(q_1^f, q_2^f) \cdot \Delta t \end{aligned}$$

• The potential is discretized on a grid and the two interpolation methods are used.

Why symplectic?

Non-symplectic method: Use (bi)linear interpolation on the derivatives of $\phi(q_1,q_2)=e^{q_1-q_2}$.

Symplectic method: Use (bi)cubic interpolation on $\phi(q_1,q_2)=e^{q_1-q_2}$.

- The relative error on the integrals of motion does not grow with a symplectic method,
- While it grows for non-symplectic methods.

Impact of tricubic interpolation irregularities

- Simple tracking of linear 2D phase space rotation and an e-cloud symplectic kick.
- Very important to minimize irregularities.
- By reducing them, there is significant impact on the particle motion.

Induced forces

Dipole magnet:

Quadrupole magnet:

