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Buildup example
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* E-cloud buildup 1s a multi-bunch effect.

* Incoherent e-cloud effect concerns the motion of single beam
particles as they encounter these electrons.

* Single particles stay inside the same bunch
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Pinch
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* Motion of electrons is very complex

* Complex electron densities — complex induced forces.

* Betatron oscillations: up-down, left-right

* Synchrotron oscillations: back-forth in “time”

* Non-linear forces + betatron/synchrotron oscillations can lead to oscillation
amplitude increase — losses + emittance growth.
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Motivation
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Losses come from:

e Luminosity burn-off that decreases gradually.
e Continuous rate of additional losses.



Filling scheme
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Standard 2018 Physics filling scheme (2556 bunches) [Ipc.web.cern.ch]

Magniﬁcation'
200ns / 800ns

R

Beam is composed of repeating
patterns (trains):

2x48 bunches,

3x48 bunches.




All bunch-by-bunch losses
4.0 <
I3iﬂ§

-2.o§

0.5 4

800 900 1000 1100 1200
Bunch slots [25ns]

Global picture: Fairly constant loss rate (Corrected for burn-off).
e Grows from head to tail of each train



Number of BBLR interactions

Number of Beam-Beam Long-Range interactions changes for each bunch in the
filling scheme.
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* Group 1: Few BBLR, reduced e-cloud effects
* Group 2: Max BBLR, reduced e-cloud effects
*  Group 3: Max BBLR, stronger e-cloud effects
* Group 4: Few BBLR, stronger e-cloud effects
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Example #1: Physics fills
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Bunch-by-bunch pattern emerges
Reminds of e-cloud buildup behaviour.

Beam-beam effects alone cannot
explain behaviour
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Example #2: Crossing angle

Typical physics fill:
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* Areduced crossing angle typically enhances BBLR interactions.
 In this case, it enhances the e-cloud pattern losses.
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Example #3: Buildup simulations
in Inner Triplet quadrupoles

One beam: Two beams:
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One beam: In the small 200 ns between batches, the electron cloud
decays significantly.

Two beams: Beams are not synchronized and the e-cloud does not
decay.
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Example #3: Buildup simulations
in Inner Triplet quadrupoles

One beam: Two beams:
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The bunch-by-bunch pattern of the losses resembles the e-cloud buildup
simulations of the Inner Triplet quadrupoles.



Example #4: Measurements with
different betatron functions

B* =65 cm, ¢ = 120 urad B* =30 cm, ¢ = 150 urad
Large ATS telescope! — Moderate ATS telescope
— enhancement of arc beta functions
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Decreasing [3 in the inner triplet quadrupoles should reduce effect
of the e-cloud in the inner triplet.

Increasing 3 in arcs should enhances e-cloud effect:
no significant losses.

'For more details, see S. Fartoukh: https://indico.cern.ch/event/772189/contributions/3209049/
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https://indico.cern.ch/event/772189/contributions/3209049/

Summary - Observations

Electron cloud related losses are enhanced when:

1. reducing B* (increasing B3 in IT)

2. reducing crossing angle (changes closed orbit in IT)
3. Two beams are present (enhanced buildup in IT)
but not when:

4. Increasing B in arcs
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All observations point to the Inner Triplet Quadrupoles.

16



Outline

3. Progress in simulations
a) Description of e-cloud interaction
b) Simulation results
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Introduction to simulations
[G. Tadarola, CERN-ACC-NOTE-2019-0033]
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Complex time-dependent e-cloud density — complex time-dependent forces
Slow incoherent effects — e-cloud can be re-used = weak-strong
approximaton (no self-consistency)

But: e-cloud potential (PIC) is defined on a 3D grid. Needs to be interpolated.
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https://cds.cern.ch/record/2684858/

Symplecticity

0 -
s"....

* Numerical methods in solving y -,
Hamiltonian systems can break the i %
symplectic condition, making them W ®  non-symplectic
less accurate at long timescales. : ®  symplectic 3
(Millions of turns)

* Typically important to preserve .,
symplecticity, even at the expense 10 Tt e
of accuracy. S s 00 B Lo

e Interpolation scheme should guarantee symplecticity.
X’ y7 T |—> X’ y7 T

o gL 0¢ 90 (v, 7)
In our case, 82q5 32¢ Px = Px BoPoc Ox X, ¥, T
symplecticity: — gL 9¢
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. . o . gL 0¢
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Tricubic interpolation

Given a regular 3D grid of any function fik, we interpolate locally
in a way that the following quantities are continuous globally.

f of of of o0°f 0°f 0°*f
"0z’ Oy’ 0z’ 0xdy’ 0xdz’ Oydz

A Lekien and Marsden” proved that it is
. possible to meet this condition by using
a tricubic interpolation scheme.

3 3 3
s f(Xaya Z) — S:S:S: aiijiijk

i=0 j=0 k=0

The coefficients a;; change from cell to
cell but required quantities stay
continuous across the cells.

* Analytical derivatives for interaction.

“F. Lekien and J. Marsden, “Tricubic interpolation in three dimensions”. https://doi.org/10.1002/nm2.1296
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Issue with PIC potential

One simulation
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PIC simulation suffers from macroparticle noise.
Can be reduced by averaging many simulations.

Averaging 4000 reveals the physical structures in the induced forces.
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Issue with cubic interpolator

102

®  Discrete Points

Linear Interp.

—— Tricubic Interp.
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—4 -2 0 4
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[zoom of left figure]

* Close look reveals irregularities from Tricubic interpolation.
» Inaccuracies are correlated with discontinuity of second derivative accross
cells.
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Refinement of potential

We found that we can treat our potential by:

1. Interpolate charge density on an auxilliary finer grid (by factor h).

2. Recalculate ¢ and derivatives in the finer grid. Ax
3. Store recalculated ¢ and derivatives on original grid. AXrefined = 7

Minimal expense on memory and speed (performed during pre-processing)
Proved analytically that error becomes:

3
ijk _ d°¢ Ax i .73
8xJ,reﬁned - _zﬁ (xia Yjs Tk)@+ O(h Ax )

10?2

® ' Discrete Points

Tricubic: Interp.
Refined

Complete mitigation of
the irregularities.

Ex [V/m]
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Quick recap

* Analytical form of e-cloud kick. XY, T = XY, T

e Used a high-order inFel.‘polation scheme (tri-cubic) p s p, — = qPL g¢ (x,y,7)
to preserve symplecticity everywhere in phase h ¢ 8;
Space. py'_>py quca (X y77-)

« Averaged multiple Particle-In-Cell e-cloud , ay
simulations to reduce macroparticle noise in the pr — Pr — % qP 8¢ (x,y,7)
interpolated data. cor

* Solved Poisson’s equation in a finer auxiliary grid
(done only once) to improve performance of the
interpolation scheme.

Next:

* Direct tracking simulation results of the incoherent effect of electron clouds in
the main dipole and quadrupole magnets of the LHC at injection energy.

* Simulations were performed with SixTrackLib (predecessor to XSuite) using
GPUs and including the full thin lattice model of the LHC.

* In SixTrackLib/XSuite, protons are tracked through each element of the lattice
using symplectic maps.
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General procedure for the simulation

Put collimators to limit e-cloud Find e-cloud build-up input
interaction to a physical region (Intensity, beam size, grid size)

Run "refinement" procedure Average many simulations
to minimize interpolation artifacts to reduce macroparticle noise
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E-cloud setup

E-cloud exists across the full length of the LHC beam pipe.
Different magnetic fields lead to completely different e-clouds.

Most significant contributors:
1. E-cloud in arc dipoles (MB) (66%)

2. E-cloud in arc quadrupoles (MQ) (7%)

We place one interaction for each three dipoles and each quadrupole.
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E-cloud setup

* One MB e-cloud per half-cell
— 46 interactions per arc
— 368 interactions.

* One MQ e-cloud per half-cell
— 45 interactions per arc
—> 360 interactions.

Tracking time per e-cloud type
(~360 interactions) is about as
much as rest of the lattice

(11k tracking elements).
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E-cloud setup
Nominal 1ntens1ty (1.2 10" p/bunch) Reduced intensity (0.6 10!! p/bunch)
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Dipoles: Reduced bunch intensity leads to larger e- density close to the beam.
Quadrupoles: Small dependence on bunch intensity, large e densities close to beam.
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E-cloud setup

Nominal intensity (1.2 10!! p/bunch) Reduced intensity (0.6 10!! p/bunch)
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* Dipoles: Reduced bunch intensity leads to larger e~ density close to the beam.
* Quadrupoles: Small dependence on bunch intensity, large e~ densities close to beam.
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Simulation Parameters

Typical LHC at injection, 2018

Bunch intensity : 1.20 10!! protons
Energy : 450 GeV
Chromaticity : 15/15
Octupole magnet’s current : 40 A
Bunch spacing : 25 ns
Transverse norm emittances : 2 um/ 2 um
R.M.S. bunch length : 0.09 m

Betatron tunes : 62.270/60.295
RF voltage : 6 MV

The three primary collimators (TCP) in IR7 (as black absorbers) are included in
the lattice at their typical configuration (5.7 “collimation” ¢ — 7.5 beam o).

There is no uncorrected linear coupling, magnet field imperfections, magnet
misalignments or beam-beam interactions in the lattice.
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Dynamic Aperture [opeam]
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Long simulations (10M turns — 15min beam time)

1.20 - 10'! ppb, MB + MQ

, ) Incoherent effects in the LHC are
=° —— Without e-cloud .
R | —— With e-cloud typically very slow processes. Need to
g" W simulate long timescales.
51 M Recent advances (SixTrackLib/XSuite)
. . allow the direct simulation of particle
9% —0.001 £ 0.012 ym/h distributions with GPUs for such times.
T S T - d = 0.110 £ 0.018 pm/h
202 Simulation using a V100 GPU took
- 1 week /20 000 particles / 10 M turns.
‘ Specific study used 6 GPUs at the same
N @ = 0.001 & 0.015 pim/h time to simulated more particles.
2
& In long term simulations we observe:
2.00 » small increase of losses

o 2 4 ?r ?,]1'0 1214 16« horizontal emittance growth,
1ime |min . .
 vertical emittance growth,
when e-clouds are included.

Experimental observations show emittance growth in the same order of magnitude.

For quantitative comparisons we have planned dedicated MDs in Run 3.
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Long simulations (10M turns — 15min beam time)

8 I No e—clolud . )
—— e-cloud in MB MB (DlpOleS).
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Se - * Losses stronger at reduced intensity.
P * Emittance growth only at reduced
g intensity.
2 . .
* Vertical growth larger than horizontal.
0 04 05 06 07 08 09 10 11 1.2
hi i 11
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0.5 e » Losses across all intensities.
_ 04 —F e-cloud in MB, MQ * Emittance growth at all intensities.
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§}50.2 vertical.
0.1
0.0 ]
04 05 06 07 08 09 10 11 12 Effects strongly correlated with the e
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g 0.3 * MB show large densities around the
gk 0.2 beam for reduced intensities,
o1 * MQ for all intensities.
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Conclusion and Remarks

Observations:
e Electron cloud in the insertion region quadrupoles is significant. Reduces
integrated luminosity.

Simulations:

*  We can do particle tracking simulations with arbitrarily complex e-clouds in
arbitrarily complex lattices for millions of turns.

* Simulated simplified scenario at injection energy. Interplay with non-linear
magnetic imperfections expected.

e Simulations have reproduced the expected qualitative behavior.

* Very long simulation timescales (several minutes) are in reach. (Using GPUs)

Outlook for the future:

* Comparison with experimental measurements needs specialized tests.
- Soon to be carried out in the LHC.

* Simulate scenario during collisions: Strong electron clouds in the Insertion
Region quadrupoles + strong beam-beam effects.

Thank you for your attention!
Konstantinos Paraschou 34



Backup slides
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Spare slide

e is emitted
(photoelectric effect)

Secondary Electron Emission can drive an avalanche multiplication
effect filling the beam chamber with an electron cloud

Beam chamber

Secondary Electron Emission 1)(G. ladarola et al, 2018, ‘Electron Cloud Effects’)
— e L } } »
Bunch spacing (e.g. 25 ns) Time

Proton bunch
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The RF bucket

x 102

10

1007 03 —02 —0.1 0.0 0.1 0.2 0.3 0.4

7 [m]

» DA simulations done for off-momentum particles (p, = 5.5 10-4).

* FMA simulations done for on-momentum particles (p, = 0).

* Long-term tracking simulations with particles across the full bucket.
*  Work in progress: FMA with off-momentum particles.

37



Frequency Map Analysis — Nominal intensity (0.6 10! p/b)
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Frequency Map Analysis — Reduced intensity (0.6 10! p/b)

1 1
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Low amplitude tune
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Reduced intensity
Dipoles (MB):

— larger tune-shift
— more resonances

Quadrupoles (MQ):
— large tune-shift
— more resonances

Particles are on-momentum,
picture is not yet complete.
Work in progress to try identify
synchro-betatron resonances.
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Tune scan
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Why symplectic?

Symplecticity is a property closely related to Hamiltonian mechanics and the
associated integrals of motion. If the numerical method for solving Hamilton’s
differential equations is not symplectic, e.g. 4™ order Runge-Kutta method,
quantities which would otherwise stay constant will grow in time.

2

p
=2 B G, q0) with B(qr,q0) = e

Consider the Hamiltonian: | H 5 5

These quantities are conserved: J1 = (p1 — pz)2 + 4et T2
(along with the Hamiltonian) D2+ 1/

p1 — J1 q1 + q2
I; = exp (\/Jl )
p1—p2 — V1 p1+ P2

We can numerically solve the equations of motion with
the method: ¢/ =g +p- At

QJZQ§+p2'At

p! =pi — g¢1 (¢/,q]) - At * The potential 1s discretized on a

- grid and the two interpolation
Py =Py~ Bz ——(a,4) - At methods are used.




Why symplectic?

Non-symplectic method: Use (bi)linear interpolation on the derivatives
of #(q1,q2) =€

Symplectic method: Use (bi)cubic interpolation on ¢(q1,¢q2) = e? %

_2 —
—— Bilinear int. ? —— Bilinear int.
4l —— Bicubic int. =4l —— Bicubic int.
-6 -6
T )
T -8 = -8
< g
3—10 _§_10
-12 ~12
—14 ~14
~16955 0.2 0.4 0.6 0.8 1.0 -1655 0.2 0.4 0.6 0.8 1.0
Time Time
-2 ) .
3 * The relative error on the integrals
6 Kr of motion does not grow with a
< s symplectic method,
< . . .
g-10 *  While it grows for non-symplectic
-12 - methods.
Bilinear int.
—14 rinear
—— Bicubic int.
-1675% 02 04 06 08 10

Time



Impact of tricubic interpolation irregularities

Simple tracking of linear 2D phase
space rotation and an e-cloud
symplectic kick.

Very important to minimize
irregularities.

By reducing them, there is
significant impact on the particle
motion.
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Induced forces
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