Electron cloud instability in J-PARC experimental observations

T. Toyama J-PARC / KEK

ECLOUD'22, 26 - 28 Oct, 2022, La Biodola (Isola d'Elba) Italy

1

Acknowledgements

• SX study

R. Muto, Y. Arakaki, T. Kimura, S. Murasugi, M. Okada, K. Okamura, T. Shimogawa,

Y. Shirakabe, M. Tomizawa, E. Yanaoka, A. Matsumura

Machine tuning

Y. Sato, S, Igarashi, Y. Sugiyama, M. Yoshii, C. Ohmori, F. Tamura, K. Hasegawa, K. Hara et al.,

Coupling impedance studies

A. Kobayashi, T. Nakamura, M. Yoshii, C. Ohmori, K. Hasegawa, Y. Sugiyama, T. Shibata, K. Ishii, Y. Shobuda, F. Tamura, K. Hanamura, T. Kawachi

• E-cloud simulation

K. Ohmi, B. Yee-Rendon, M. Tomizawa

• Test bench of concentric cylinder

M. Okada

and J-PARC staff

Japan Proton Accelerator Research Complex

S. Igarashi, ATAC2020, Feb. 8th, 2022

Current understanding of the phenomenon

Encountered Beam Instability at debunch timing

Currently Limiting SX beam intensity (large beam loss for SX)

6

Beam monitor signals

2020. 6. 5 11:05:03 shot#76096

2020. 6. 5 11:10:21 shot #76096 Beam power = 51.0 kW

2020. 6. 5 11:10:21 shot#76096

Δy : 190 turn Fourier transform at each slice @ around P3+69ms Oscillation occurs very local places, not necessarily at the beam density peak nor EC peak.

2020. 6. 5 11:10:21 shot#76096

0.05

0.01 1. 2800

3000

3200

3400

Turn

3600

3800

4000

Countermeasures against electron clouds

✓ Suppress the longitudinal microwave instability

- Evaluate and reduce longitudinal impedances
 - \checkmark Evaluation of longitudinal impedances
 - \checkmark Reduction of Z_L of new septa
 - ➤ inserting SiC-loaded flanges
- Blowup the longitudinal emittance
 - \checkmark Phase-offset injection to the RF buckets
 - \checkmark Step reduction of the RF voltage
 - ✓ Designing a new VHF cavity

Longitudinal impedance of the J-PARC MR

A. Kobayashi et al., NIM A1031 (2022) 166515

Spectrogram plot of the wall current monitor

Microstructure in the longitudinal distribution may relate with the longitudinal impedance Under study with simulation → Tomizawa-san's talk

Current Mitigations of Beam Instability

• Beam injected to MR RF buckets with a phase offset (effective up to 50 kW) 256kV RF turned off at a flat top (P3) non-adiabatically

 2-step (voltage) debunch in combination with the phase offset injection Newly introduced from Dec., 2020

ramped up the beam power for the user run from 50kW to 64.6 kW.

VHF RF cavity for emittance blowup

Table I. Parameters of the simulation for the longitudinal emittance blow-up.

f _b [MHz]	117.95
V_b [kV]	100
$\Delta \phi_m$ [rad]	π
f_m	$16 \times f_s$
Harmonic number of fundamental RF	9
Number of bunches	8
Particles per bunch	2×10^{13}
Macroparticles per bunch	1×10^{5}
Slices per bucket	100
σ_t for every bunch [ns]	30
VHF operation period from K1 [s]	0 - 0.13
f_s : synchrotron frequency	

 $f_b/f_{rev} = 635 (f_{rev}: \text{beam revolution frequency})$

Fig. 1. Simulated longitudinal emittance blow-up.

16

Test Bench of multipactors

Goal

- Understanding multipacting in concentric cylinder
- Evaluation of the electron cloud detector
- Evaluation of surface coatings (amorphous carbon)

Setup

 $f_{RF} = 50 \text{ MHz}$ $V_{RF} = 200 \text{ V}$

 $E_{max} =$ 384 eV, $\,\delta_{\,max} = 1.32$ Vaughan model

Evolution of the Electric field

phase = 0 deg

 $f_{RF} = 50 \text{ MHz}$ $V_{RF} = 200 \text{ V}$

 $E_{max} = 384 \text{ eV}, \ \delta_{max} = 1.32$ Vaughan model

Evolution of the Electric field

phase = 45 deg

 $f_{RF} = 50 \text{ MHz}$ $V_{RF} = 200 \text{ V}$

 $E_{max} = 384 \text{ eV}, \ \delta_{max} = 1.32$ Vaughan model

Evolution of the Electric field

phase = 90 deg

 $f_{RF} = 50 \text{ MHz}$ $V_{RF} = 200 \text{ V}$

 $E_{max} =$ 384 eV, $\,\delta_{\,max} = 1.32$ Vaughan model

Evolution of the Electric field

phase = 135 deg

 $f_{RF} = 50 \text{ MHz}$ $V_{RF} = 200 \text{ V}$

 $E_{max} =$ 384 eV, $\,\delta_{\,max} = 1.32$ Vaughan model

Evolution of the Electric field

phase = 180 deg

 $f_{RF} = 50 \text{ MHz}$

 $V_{\text{RF}} = 200 \text{ V}$

$$E_{max} = 384 \text{ eV}, \ \delta_{max} = 1.32$$

Vaughan model

Space Charge ON

23

- $\checkmark\,$ Electron is suggested by the signal suppression with a permanent magnet
- ✓ Negative and positive signal peaks are observed depending on the V_g and at different timings positive signals are suspected secondary electrons from collector
- The signal saturates in a few microseconds
 Time scale is consistent with the CST simulation
 Additional study is needed on signal magnitude

Summary (1)

FX mode

 ✓ After large modification of vacuum components (usually long shutdown) accompanying vacuum pressure rise,

scrubbing run of a few days is effective to reduce the pressure rise

- ✓ No issue during routine operations
- ✓ Beam intensity will increase from 2.5×10^{14} ppp $\rightarrow 3.3 \times 10^{14}$ ppp in future
- ✓ The EC possibility during bunch manipulation at the top energy is under study

Summary (2)

SX mode

✓ During the debunching process at the flat-top
 EC, vacuum pressure rise, and beam loss occur
 connection to transverse instabilities:
 not yet direct correlation between EC and instability
 because EC signal is a local measurement at the drift space,
 while instability is caused by global effects (?)
 → EC may be large at Q, B?

Summary (3)

SX mode

✓ EC is now a limiting factor

 ✓ Beam intensity will increase from 7.0x10¹³ ppp → 1.1x10¹⁴ ppp in future Reducing the longitudinal microstructure with phase offset injection to the RF bucket step switching-off of the RF voltage coupling impedance reduction (Z_L)
 Preparing the VHF cavity for emittance blowup

Summary (4)

Test bench with concentric cylinder

- \checkmark Electron is suggested with the signal suppression with a permanent magnet
- ✓ Negative and positive signal peaks are observed depending on the V_g and at different timings
 - positive signals are suspected secondary electrons from collector
- ✓ The signal saturates in a few microseconds

Time scale is consistent with the CST simulation

Additional study is needed on signal magnitude

 Coated cylinder will be tested, with the same material as the sample for in-situ measurement @Fermilab (amorphous carbon) Thank you!