Electron Cloud Effects at SuperKEKB

K. Ohmi (KEK) ECLOUD'22, Sep. 26-28, 2022 d'Elba, Italy

SuperKEKB

- C=3016.3m, e+(4GeV)-e-(7GeV) circular collider
- Half crossing angle, ϕ_c =41.5mrad, σ_z =6/5mm.

	Phase 2 (May 2018)		Phase 3 2021-2022		Design	
	LER	HER	LER	HER	LER	HER
$\beta_x * [mm]$	200	200	80	60	32	25
$\beta_y^*[mm]$	4	4	1	1	0.27	0.30
ϵ_x [nm]	2.1	4.6	4.0	4.6	3.2	4.6
ε _y [pm]	Ę	5	25		0.27	0.28
I _b [mA]	340	285	1	0.8	1.44	1.04
ξ _x			0.0**	0.0*	0.0028	0.0012
ξ _y	0.019	0.013	0.0**	0.03	0.088	0.081
N_{bunch}	788		1576		2500	
L [cm ⁻² s ⁻¹]	1.3x10 ³³		4.6x10 ³⁴		8x10 ³⁵	
$PA \ \Phi_c$	10	8	15.2	9.7	24.7	19.4

Instability simulation at SuperKEKB design stage

• Using code PEHTS

where $K = \omega_e \sigma_z/c = 17$ and $Q = min(\omega_e \sigma_z/c, Q_{nl})$

Design target for vacuum system: $\rho_e{<}10^{11}\mbox{ m}{}^{-3}$ in average of whole ring

Wake force induced by electron cloud

• Discuss later in detail.

KEKB: measurement and simulation of fast head-tail instability

Beam size blow up observed, and simultaneously synchro-beta sideband observed.

FIG. 1. Two-dimensional plot of vertical bunch spectrum versus bunch number. The horizontal axis is the fractional tune, from 0.5 on the left edge to 0.7 on the right edge. The vertical axis is the bunch number in the train, from 1 on the bottom edge to 100 on the top edge. The bunches in the train are spaced 4-rf buckets (about 8 ns) apart. The bright, curved line on the left is the vertical betatron tune, made visible by reducing the bunchby-bunch feedback gain by 6 dB from the level usually used for stable operation. The line on the right is the sideband.

Simulation (PEHTS)

HEADTAIL gave similar results (E. Beneditto showed large cloud gave nice sideband signal)

Phase I commissioning

- 2017 Feb.-June
- No collision. Test as two storage rings, e+(LER) and e-(HER).
- I=1A(e+) and 0.8A(e-) were stored.
- Electron cloud studies were performed.
 - Beam size blow-up caused by electron cloud was seen, but was recovered by permanent solenoid magnets.

Beam size blow-up in LER

- Beam-size blowup observed in KEKB had been seen in early stage of SuperKEKB commissioning
- 1. Threshold I~300mA in Apr 19
- 2. Electron cloud has been monitored at AL chamber w and w/o TiN coating
- 3. Aluminum bellows, which were not coated by TiN, were suspected as an electron source.
- 4. Permanent magnets were installed at the aluminum bellows.(Y. Suetsugu et al.)
- 5. The blow up was suppressed.
- 6. Systematic studies were done in 1 June before PM and in 8 July after PM installation.

Simulation studies using beam study condition

Threshold of the electron density $\epsilon_x{=}2nm,\,\epsilon_y{=}15pm,\,\sigma_z{=}6mm,\,\nu_s{=}0.019$

Electron density at the blow-up threshold

 \bigstar Simulated electron density at the threshold current

• Measured threshold current and density

Local density at Al chamber Al part (bellow) occupies only 5% of whole ring, but dominant for ecloud instability.

Discrepancy in \bigstar and \bigcirc is seen at narrow bunch spacing.

Electrons in antechamber part (95%)

contributes the instability, especially large bunch spacing.

Overall density contributes at narrow but density=0.05x density=0.05x

After installation of permanent solenoid at AI bellows

- The density at AI bellows is not dominant for the instability.
- Threshold is determined by the overall averaged density.

Summary of measurement and simulation

Before PM installation

- $\rho_{th}(by 2) = 2x10^{12}x0.05 + \rho_2(160mA)$,
- $\rho_{th}(by3)=3x10^{12}x0.05+\rho_3(200mA)$, $\rho_3(200mA)=1.75x10^{11}$
- $\rho_{th}(by4) = 6x10^{12}x0.05 + \rho_4(260mA)$, $\rho_4(260mA) = 1.25x10^{11}$
- $\rho_{th}(by6) = 8x10^{12}x0.05 + \rho_6(500mA)$,

After PM installation

- $\rho_{th}(by2) = \rho_2(200mA)$
- $\rho_{th}(by3) = \rho_3(330mA)$
- $\rho_{th}(by4) = \rho_4(>600 \text{mA})$

Operation with 600 bunches

Assume simulation is correct

 $\rho_{2}(160 \text{ mA}) = 2.25 \times 10^{11}$ $\rho_{3}(200 \text{ mA}) = 1.75 \times 10^{11}$ $\rho_{4}(260 \text{ mA}) = 1.25 \times 10^{11}$ $\rho_{6}(500 \text{ mA}) = 0.75 \times 10^{11}$

Assume linear increase for I $\rho_2(200 \text{ mA}) = 2.8 \times 10^{11}$ $\rho_3(330 \text{ mA}) = 2.9 \times 10^{11}$

3,4

3,8

4.2

$$\rho_4(600 \text{ mA}) = 2.9 \times 10^{11}$$

 $\rho_6(600 \text{ mA}) = 0.9 \times 10^{11}$

Finding

- ρ_{th} given by simulation can explain measurement.
- In the formula, $\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{\sqrt{3}KQr_e\beta_yL}$
 - $Q=min(\omega_e\sigma_z/c,Q_{nl})$, Q_{nl} is around ~6.
- Q is lower for higher bunch current, I>0.5mA.
- The formula works well as a first step evaluation.

Electron buildup simulation in ante-chamber

• Band matrix solver for electric field induced by electron cloud.

- Beam force, combination of Basetti-Erskine formula (r<10 σ_{x}) and potential solver (r>10 σ_{x}).
- Synchrotron light is assumed to illuminate innermost of the ante-slot.
- Electron production, $\cos(\theta)$ distribution for normal direction.

Beam force near ante-slot

Electron distribution, potential and motion

 Weak space charge limit. Production rate 0.8x10⁵m⁻¹/bunch, beam line density 2x10¹⁰ m⁻¹.

Ecloud Simulation in antechamber

- N₀: Number of electron created at illuminated point (slot end),
 N_{in}: #electron go inside the beam area, N_{out}: go out to the slot area.
- $N_p = 6.26 \times 10^{10}$ (1mA/bunch), 6ns spacing, $\lambda_p = 3.48 \times 10^{10}$ m⁻¹.
- Weak space charge limit, production rate 5x10⁵m⁻¹/bunch
- No secondary, no reflected electrons.

Ecloud Simulation in antechamber

- N₀: Number of electron created at illuminated point (slot end),
 N_{in}: #electron go inside the beam area, N_{out}: go out to the slot area.
- $N_p = 6.26 \times 10^{10}$ (1mA/bunch), 6ns spacing, $\lambda_p = 3.48 \times 10^{10}$ m⁻¹.
- Production rate, 0.016 e-/m/e+, 10x10⁸m⁻¹/bunch.
- Secondary SEY=1.2, reflected electrons 0.7.

Finding in ecloud simulation in the antechamber

- Beam force arrives only 5mm inside of slot.
- Number of electrons coming from the slot is 7% of created electron at slot end for weak electron density. The number is reduced to 3-4% for average electron production.
- The number change a little for the bunch current 0.5 or 1mA.

Electron cloud Wake model (single bunch)

Example of wake force K.Ohmi, F. Zimmermann, E. Perevedentsev, PRE65, 016502 (2001)

• For small x-y size of electron cloud,

$$W(z) = c \frac{R_S}{Q} \frac{\omega_R}{\omega} \exp\left(\frac{\alpha}{c}z\right) \sin\left(\frac{\omega}{c}z\right)$$

$$c R_S / Q = \frac{\gamma \omega_b^2 \omega_c}{\lambda_b r_c c^3} L \qquad \omega_{b,y}^2 = \frac{2\lambda_c r_e c^2}{\gamma k_y (\sigma_x + \sigma_y) \sigma_y}, \qquad \omega_{c,y}^2 = \frac{2\lambda_b r_e c^2}{k_y (\sigma_x + \sigma_y) \sigma_y}$$

$$\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{2}}$$

Instability threshold for coasting beam model

- Instability threshold in coasting model (A. Chao's textbook Chap 5)
 - Coherent growth due to the wake force
 - Decoherence due to the longitudinal slippage

Stability condition

$$\frac{cR_s}{\omega_e} = \frac{\gamma L \eta_p \omega_e \sigma_\delta}{\sqrt{3} N_b r_e \beta \omega_0} \qquad \longrightarrow \qquad \rho_{e,th} = \frac{2\gamma \nu_s \omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L}$$

- Wake is terminated by the bunch length, Q=Min($\omega_e \sigma_z/c$,Q_{nl}=7).
- Number of electrons, which contributes to the instability, depends on $\omega_e \sigma_z/c$. The enhancement K is chosen K= $\omega_e \sigma_z/c$.

$$cR_S/Q = \frac{\gamma \omega_b^2 \omega_e L}{\lambda_b r_e c^3} \qquad \qquad \omega_b^2 = \frac{\lambda_e r_e c^2}{\gamma \sigma_x \sigma_y} \qquad \qquad \omega_e^2 = \frac{\lambda_b r_e c^2}{\sigma_x \sigma_y}$$
$$\lambda_b = \frac{N_b}{2\pi \sigma_x}$$

Realistic model: Gaussian distribution for z

- Conventional wake is a function of z-z', where z is a variable of motion and z' is the position with displacement in a bunch.
- Longitudinal distribution is Gaussian, $e^{-z^2/2\sigma_z^2}$.
 - Frequency of electron ω_e in bunch potential depends on z.
 - Electrons are pinched, thus the transverse profile of electrons depends on z.
- Wake force is a function of z and z', Wy(z,z').
- The wake force are calculated by a simulation, in which momentum kick at z is calculated for giving a deviation in a part of bunch (z').

Wake force induced by electron cloud

• Wy(z,z') depends on z and z'.

 $W_{Q,y}(z)$: diagonal component of $W_{Y}(z,z)$

How to treat this wake force in Vlasov solver

• Momentum kick induced by electron cloud $\Delta p_y = -\frac{\lambda_e L r_e}{\gamma} \left[W_{Q,y}(z) \rho_y(z) + \int_z^{\infty} W_y(z,z') \rho_y(z') dz' \right]$

$$\rho_{y}(z) = \rho(z)y(z) \quad \rho(z) = \int \psi(z,\delta)d\delta$$
$$\rho_{y}(z) = \int y(z,\delta)\psi(z,\delta)d\delta$$

• Expression by longitudinal phase space variables

$$\Delta p_{y}(z,\delta) = -\frac{\lambda_{e}Lr_{e}}{\gamma} \int_{-\infty}^{\infty} [W_{Q,y}(z,z)\delta(z-z') + W_{y}(z,z')]\psi(z',\delta')y(z',\delta')dz'd\delta'$$

$$\Delta p_{y}(J,\phi) = -\frac{\lambda_{e}Lr_{e}}{\gamma} \int_{-\infty}^{\infty} [W_{Q,y}(z)\delta(z-z') + W_{y}(z,z')]\psi(J')y(J',\phi')dJ'd\phi'$$

• Azimuthal mode expansion

$$\frac{y(J,\phi)}{\sqrt{\beta_y}} = \sum_{l=-\infty}^{\infty} y_l(J)e^{il\phi} \qquad \sqrt{\beta_y}p_y(J,\phi) + \frac{\alpha_y}{\sqrt{\beta_y}}y(J,\phi) = \sum_{l=-\infty}^{\infty} p_l(J)e^{il\phi}$$

Reduce to the Eigenvalue problem

Momentum kick for azimuthal mode

$$\begin{split} \Delta p_l(J) &= -\frac{Nr_e\beta_y}{\gamma} \int dJ' \sum_{l'=-\infty}^{\infty} \left[V_{l,l'}(J,J')\psi(J')y_{l'}(J) + W_{l,l'}(J,J')\psi(J')y_{l'}(J') \right] \\ V_{l,l'}(J,J') &= \frac{1}{2\pi} \iint_0^{2\pi} d\phi d\phi' W_{y,Q}(z-z')e^{-i(l-l')\phi} \\ W_{l,l'}(J,J') &= \frac{1}{2\pi} \iint_0^{2\pi} d\phi d\phi' W_y(z-z')e^{-il\phi+il'\phi'} \end{split}$$

• Discretizing for J, the transformation is expressed by matrix.

$$\begin{split} \Delta p_l(J) &= \sum_{j'=0}^{N_J} \sum_{l'=-l_{max}}^{l_{max}} M_{jl,j'l'} y_{l'}(J') \\ M_{jl,j'l'} &= -\frac{Nr_e \beta_{y}}{\gamma} \left[\sum_{j''} V_{l,l'}(J,J'') \psi(J'') \Delta J \delta_{jj'} + W_{l,l'}(J,J') \psi(J') \Delta J \right] \end{split}$$

Eigen mode analysis for W(z,z')

 One turn Matrix with the size (2xn_Jx(2I_{max}+1))² is constructed by multiplication of syncho-beta and the wake transformations.

Electron cloud Wake model (multi-bunch)

- Positron bunch starts to create
 electron cloud.
- A bunch shift positive in stationary formed electron cloud.
 - Electron cloud start to move positive.
 - The bunch is kicked positive.
- Electrons in cloud

Coupled bunch instability

Figure 7: Horizontal mode spectrum in KEKB. Left bicture is given by measurement with solenoid OFF [4,5]. Right picture is simulated by electron cloud in drift space.

Figure 8: Horizontal mode spectrum in KEKB. Left bicture is given by measurement with solenoid ON [4,5]. Right picture is simulated by electron cloud in solenoid field 10G.

"ec001t.f11" index 200 matrix

40

58

High R/Q and Low Q=1

Summary

- Electron cloud instability had been seen in early stage of SuperKEKB commissioning (Phase I, 2016).
- The instability was cured by installation of weak solenoids at aluminum bellow section.
- The density of instability threshold is almost consistent with simulation and theory.
- In recent measurement (June, 2022), any beam size blow up was not observed.
- Specific luminosity did not depend on the number of bunches in physics and machine experiments. No electron effects in luminosity.
- Electron leakage from antechamber slot was estimated as several, 3-7 %.
- TMCI analysis for W(z,z') is available.

Thank you for your attention

Simulated threshold electron density (before/after permanent magnet installation)

• $N_b = 600$, $\varepsilon_x = 2nm$, $\varepsilon_y = 15pm$, $\sigma_z = 6mm$,

0) (ω _e /2π (GHz)	$\omega_e \sigma_z / c$	$\substack{ \rho_{eth} \ (Q=10) \\ (10^{11}m^{-3}) }$	$\substack{ \rho_{eth} \ (Q=6) \\ (10^{11} m^{-3}) }$	$\begin{array}{l} \rho_{eth} \left(\text{Simu} \right) \\ \left(10^{11} \text{m}^{\text{-3}} \right) \end{array}$	spacing	I _{p,th} (mA)	
6	61	7.7	1.91	2.45	3.2	2 (4ns)	160	
_	71	8.9	1.65	2.45	3.4	3 (6ns)	200	
7	80	10.1	1.47	2.45	3.6	4 (8ns)	260	
2	111	14.0	1.47	2.45	4.0	6 (12ns)	500	
	71	8.9	1.65	2.45	3.4	2 (4ns)	200	
5	91	11.5	1.47	2.45	3.8	3 (6ns)	350	
5	122	15.3	1.47	2.45	4.2	4 (8ns)	>600	

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{\sqrt{3}KQr_0\beta L} \qquad \begin{array}{l} K = \omega_e\sigma_z/c\\ Q \models \min(\omega_e\sigma_z/c, \mathbf{6}) \end{array}$$

チェンバー内の電子数シミュレーション ・放射光が当たっている場所(アンテチェンバースロット最奥部) から電子が放出される。数を1単位とする。

- $N_p = 3.13 \times 10^{10}$ (0.5mA/bunch), 6ns spacing, $\lambda_p = 1.74 \times 10^{10}$ m⁻¹.
- Weak space charge limit, production rate 5x10⁵m⁻¹/bunch
- No secondary, no reflected electrons.

チェンバー内の電子数シミュレーション

- 放射光が当たっている場所(アンテチェンバースロット最奥部)
 から電子が放出される。数を1単位とする。
- $N_p = 3.13 \times 10^{10}$ (0.5mA/bunch), 6ns spacing, $\lambda_p = 1.74 \times 10^{10}$ m⁻¹.
- Production rate, 0.016 e-/m/e+, 5x10⁸m⁻¹/bunch.
- No secondary, no reflected electrons.

チェンバー内の電子数シミュレーション

- 放射光が当たっている場所(アンテチェンバースロット最奥部)
 から電子が放出される。数を1単位とする。
- $N_p = 3.13 \times 10^{10}$ (0.5mA/bunch), 6ns spacing, $\lambda_p = 1.74 \times 10^{10}$ m⁻¹.
- Production rate, 0.016 e-/m/e+, 5x10⁸m⁻¹/bunch.
- Secondary SEY=1.2, reflected electrons 0.7.

チェンバー内の電子数シミュレーション

- 放射光が当たっている場所(アンテチェンバースロット最奥部)
 から電子が放出される。数を1単位とする。
- $N_p = 6.26 \times 10^{10}$ (1mA/bunch), 6ns spacing, $\lambda_p = 3.48 \times 10^{10}$ m⁻¹.
- Production rate, 0.016 e-/m/e+, 10×10^8 m⁻¹/bunch.
- No secondary, no reflected electrons.

