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╺ SQMS Algotithm Thrust
- Simulation of condensed matter / quantum field theories
- Device benchmarking
- Control methods
- Open source libraries

Florence:

╺ Quantum Simulations of Condensed Matter Systems 
- Slides coutesy of Laura Gentini

╺ Quantum Learning for Hardware Characterization
- Slides courtesy of Paolo Braccia
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Variational method

Find ground state of an Hamiltonian, ෡𝐻

• Ansatz→ parametrize |𝜓 𝜃 ⟩

• Compute the energy 𝐶 𝜃 = ⟨𝜓 𝜃 ෡𝐻 𝜓 𝜃 ⟩

• Minimize 𝐶(𝜃) → find 𝜃𝑜𝑝𝑡 | 𝐶 𝜃𝑜𝑝𝑡 = min
𝜃

𝐶(𝜃)

• |𝜓 𝜃𝑜𝑝𝑡 ⟩ best approximation of the ground state
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• 𝜓 𝜃 = 𝑈 𝜃 |𝜓0⟩

• 𝐶 𝜃 = ⟨𝜓 𝜃 ෡𝐻 𝜓 𝜃 ⟩

Quantum

𝜓

𝜓

𝜓

U
pdate

Variational Parameters
(𝜃1, 𝜃2, … , 𝜃𝑝 )

• Perform a optimization 

step

• Pass new parameters 

as feedback

Classical𝜃

Q C Find 𝜃𝑜𝑝𝑡!

𝑈(𝜃1, 𝜃2, … , 𝜃𝑝)

Hybrid Scheme
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𝜃𝑜𝑝𝑡

𝜃0
• 𝜃 define a parameter space

• 𝐶 𝜃 → landscape

• At each optimization step we move a little

𝜃(𝑖+1) = 𝜃(𝑖) − 𝛼𝑖∇𝜃𝐶 𝜃𝑖

• Guided by the gradient

• The algorithm defines a path

Exploring the landscape
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𝜃𝑜𝑝𝑡

𝜃0
• Path full of traps

• Local minima or Plateaus

∇𝜃𝐶 = 0

• We can’t take any step further

• but we do not have the solution

𝜃 ⟺ |𝜓 𝜃 ⟩

geometrical point of view?

Stochastic outcomes & Noise → useful?

ቊConvergence
Role of Noise and outcomes

Exploring the landscape
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∇𝐶 𝜃 = 𝔼𝑧∼𝑞 𝑧 𝜃) 𝑔 𝜃, 𝑧

𝑔: ℝ𝑝 → ℝ𝑝 sampling 𝑧 from 𝑞 𝑧 𝜃 ≠ 𝑝(𝑦|𝜃)

𝐶 𝜃 1:𝐼 − 𝐶 𝜃𝑜𝑝𝑡 ≤ 𝑅 𝐺
𝐼

After 𝐼 iterations  →

𝜃(𝑖+1) = 𝜃(𝑖) − 𝛼𝑖 𝑔(𝜃(𝑖))

𝛼𝑖 =
𝑅

𝐺 𝐼

∇𝐶 𝜃 = 𝜓 𝜃 ෠𝐹 𝜓 𝜃

𝜃 1:𝐼 =
1
𝐼 ෍

𝑖

𝐼

𝜃𝑖

𝜃𝑜𝑝𝑡

𝜃 1:𝐼

𝔼 𝑔(𝜃) 2 ≤ 𝐺2If

On device gradient evaluation
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𝜌 𝜃 = ℰ𝑝
𝜃𝑝 ∘ … ∘ ℰ1

𝜃1 𝜌0 ℰ𝑗
𝜃𝑗 CPTP map

𝐶𝑛𝑜𝑖𝑠𝑦 𝜃 1:𝐼 − 𝐶 𝜃𝑜𝑝𝑡 ≤ 𝐸𝑟𝑟 𝜃𝑜𝑝𝑡, 𝜗𝑜𝑝𝑡 + 𝑅
𝐺𝑛𝑜𝑖𝑠𝑦

𝐼

𝐸𝑟𝑟 𝜃, 𝜗 ≑ 𝐶𝑛𝑜𝑖𝑠𝑦 𝜗 − 𝐶(𝜃)

          

 

 

  

  

   

  

 

           

           

          

 

 

  

  

   

  

 

𝐶𝑛𝑜𝑖𝑠𝑦 𝜃 = 𝑇𝑟 𝜌 𝜃 𝐻 → 𝐶𝑛𝑜𝑖𝑠𝑦 𝜗𝑜𝑝𝑡 with     𝜗𝑜𝑝𝑡 ≠ 𝜃𝑜𝑝𝑡

CPTP map 𝜓 𝜃 = 𝑈 𝜃 𝜓0 → 𝜌 𝜃 = ℰ 𝜃 [𝜌0]

𝐶𝑛𝑜𝑖𝑠𝑦 𝜃 1:𝐼 − 𝐶𝑛𝑜𝑖𝑠𝑦 𝜗𝑜𝑝𝑡 ≤ 𝑅
𝐺𝑛𝑜𝑖𝑠𝑦

𝐼
After 𝐼 iterations  →

Taking Noise into account
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𝐶𝑛𝑜𝑖𝑠𝑦 𝜃 1:𝐼 − 𝐶 𝜃𝑜𝑝𝑡

+

Accuracy after 𝐼 iterations

≤

𝐸𝑟𝑟 𝜃𝑜𝑝𝑡, 𝜗𝑜𝑝𝑡

𝑅 𝑝 𝐻 ∞
𝐼

max
𝑗,𝜃

QFI𝑗(𝜃)

Increases with noise strength

Decreases with noise strength
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Numerical Experiment
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Noise Resilient
Variational

Quantum Classical
Optimization

https://doi.org/10.1103/PhysRevA.102.052414
Gentini, Cuccoli, Pirandola, Verrucchi, Banchi

Variational 
Approximation of 

Low-Energy 
Hamiltonians on Real 
Quantum Hardware 

Gentini, Cuccoli, Banchi
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Low energy approximation
𝐻𝜆 = 𝐻0 + 𝜆𝑉

𝐻𝜆 = ℎ𝜎3𝑧 + 𝜆( 𝐽1𝜎1𝑥𝜎3𝑥 + 𝐽3𝜎2𝑥𝜎3𝑥)

𝐽1, 𝐽3 ≪ ℎ

Hilbert Space 

𝒫 : Low energy sector
𝐸 ∼ −ℎ

𝜓𝒫 = 𝜓12 |03⟩

𝒬 ∶ High energy sector
𝐸 ∼ +ℎ

𝜓𝒬 = 𝜓12 |13⟩

Effective interaction of qubits 1 and 2

Effective Hamiltonian ⟨𝜓𝒫|𝐻𝑒𝑓𝑓 𝜓𝒬 = 0

3

21

𝐽1 𝐽3

ℎ
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Variational low energy approximation

𝑈† 𝐻𝑈 = 𝐷𝒫𝒬
𝑈 𝜃 ?

• No trivial cost function for “Block 
Diagonalization”  (or even Diagonalization…)

• Very difficult to create a sufficiently complex 
ansatz 

Need a physical motivated 
structure

Block diagonalize the Hamiltonian
=

Find a Low energy effective Hamiltonian
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𝐻𝜆 = 𝐻0 + 𝜆𝑉

𝜇 ∈ [0…𝜆]

𝐻(𝜇 = 0) = 𝐻0|𝑔0⟩
𝜇

𝐻 𝜇 = 𝜆 = 𝐻𝜆|𝑔𝜆⟩

Only ground state 

Level crossing → Failure

Adiabatic state preparation

Adiabatic Gauge Potential
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𝑈𝜇 = 𝒯𝜈 𝑒(−𝑖 0׬
𝜇 𝐴𝜈 𝑑𝜈)

𝐴𝜇 = 𝑖 𝜕𝜇𝑈𝜇 𝑈𝜇
†

෩𝐻𝜇:= 𝑈𝜇
†𝐻𝜇𝑈𝜇

෩𝐻𝜇 is diagonal at every step
In the eigenbasis of 𝐻0

𝐻𝜆 = 𝐻0 + 𝜆𝑉 𝜇 ∈ [0…𝜆]

Adiabatic Gauge Potential



16

෩𝐻𝜇:= 𝑈𝜇
†𝐻𝜇𝑈𝜇

𝐴𝜇 = 𝑖 𝜕𝜇𝑈𝜇 𝑈𝜇
†

𝑑/𝑑𝜇

‖𝐺𝜇‖ = ‖𝑉 + 𝑖 𝐴𝜇,𝐻𝜇 ‖ = 0෩𝐻𝜇 =෍
𝑛

𝐸𝑛 𝜇 |𝑛 0 ⟩⟨𝑛(0)|

𝑛 0 ≡ |𝑛 𝜇 = 0 ⟩ 𝐶𝜇 𝜶 = ‖𝐺𝜇(𝜶)‖ = ‖𝑉 + 𝑖 𝐴𝜇 𝜶 ,𝐻𝜇 ‖

𝜶𝑜𝑝𝑡 | 𝐶𝜇 𝜶𝑜𝑝𝑡 = min
𝜶

𝐶𝜇(𝜶)

Adiabatic Gauge Potential
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‖𝒫 𝑉 + 𝑖 𝐴𝜇 𝜶 ,𝐻𝜇 𝒬‖ ≔ ‖𝒫 𝐺𝜇 𝒬‖ = 0

𝐴𝜇 𝜶 =෍
𝑖=1

𝐿

𝛼𝑖
𝜇 𝐵𝑖 𝐵𝑖‘s are Local Operators → Approximation!

Efficiently reproduce the EXACT AGP 
between sectors 

‖𝒫 𝑉 + 𝑖 𝐴𝜇 𝜶 ,𝐻𝜇 𝒫‖ ≔ ‖𝒫 𝐺𝜇 𝒫‖ ≠ 0

Fail in reproducing the EXACT AGP 
inside each sector 

෩H𝜇 = 𝑈𝜇
† 𝜶 𝐻𝜇𝑈𝜇(𝜶) Block diagonalized the Hamiltonian

Variational Schrieffer-Wolff Transformations for Quantum Many-Body Dynamics  J.Wurtz, P.W. Claeys, and A. Polkovnikov
10.1103/PhysRevB.101.014302

Approximating the AGP
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Embedding in Quantum Computing framework

𝑈𝜇 𝜶 =ෑ
𝑖=1

𝐿

𝑒−𝑖𝛼𝑖
𝜇𝐵𝑖 𝑔𝑖

𝜇 = 𝑒−𝑖𝛼𝑖
𝜇𝐵𝑖 Single qubit or two qubit parametrized gate 

𝜇 ∈ 0…𝜆 → 𝜇𝑡 = 𝛿𝜇 𝑡

𝐶𝜇 𝜶𝑡 → 𝐶𝑡 (𝜶𝑡+1 − 𝜶𝑡)

𝛿𝜇 =
𝜆
𝑇
, 𝑡 ∈ 0, 𝑇 ∈ ℕ

𝑋𝑡
𝜶𝑡+1 − 𝜶𝑡

𝛿𝜇
= 𝑌𝑡

𝑡 = 0 , 𝜇 = 0, 𝐻 = 𝐻0 is diagonal  

𝐶0 (𝜶1 − 𝟎) 𝑋0
𝜶1
𝛿𝜇 = 𝑌0

𝑡 = 1 𝐶1 (𝜶2 − 𝜶1
𝑜𝑝𝑡) 𝑋1

𝜶2
𝛿𝜇

= 𝑌1

𝑡 = 0

𝑡 = 2 𝐶1 (𝜶3 − 𝜶2
𝑜𝑝𝑡)Analytic Minimization

solving a linear system

…

𝑡 = 𝑇 (𝜇 = 𝜆) 𝜶𝑇
𝑜𝑝𝑡
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𝑋𝑡
𝜶𝑡+1
𝛿𝜇

= 𝑌𝑡

𝑋ሚ𝑙𝑙 = ෍
𝑗𝑘

ℎ𝑗 ℎ𝑘 𝑇𝑟(𝑖[𝑈𝑙 𝐵𝑙 𝑈𝑙
†, 𝜎𝑗] 𝑖[𝑈ሚ𝑙𝐵ሚ𝑙𝑈ሚ𝑙

†, 𝜎𝑘])

𝐻𝜇 =෍
𝑘

ℎ𝑘𝜎𝑘

𝑈𝑙 𝜶[1: 𝑙] =ෑ
𝑖=1

𝑙

𝑒−𝑖𝛼𝑖𝐵𝑖

|𝜙𝑁⟩ → 𝑇𝑟 𝐴𝐵 = 2𝑁 𝜙𝑁 𝐴𝑇 ⊗ 𝐵 |𝜙𝑁⟩

𝑝 0 ∝ 𝑋ሚ𝑙𝑙 Repeat 𝑆 times

Embedding in Quantum Computing framework
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𝑋𝑡
𝜶𝑡+1
𝛿𝜇 = 𝑌𝑡

𝑌𝑙 = -෍
𝑗𝑘

𝑣𝑗 ℎ𝑘 𝑇𝑟 𝑃𝑗 𝑖 𝑈𝑙 𝐵𝑙 𝑈𝑙
†, 𝜎𝑘

𝑝 0 ∝ 𝑌𝑙 Repeat 𝑆 times

𝑉 =෍
𝑘

𝑣𝑘𝑃𝑘

𝐻𝜇 =෍
𝑘

ℎ𝑘𝜎𝑘

𝑈𝑙 𝜶[1: 𝑙] =ෑ
𝑖=1

𝑙

𝑒−𝑖𝛼𝑖𝐵𝑖

𝒪 𝑁2𝛾𝐿2𝑇
𝛾 = 1 𝐻𝜇 is 1-local or 2-local
𝛾 = 2 𝐻𝜇 all couples interactions

…

Embedding in Quantum Computing framework
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𝐻𝜆 = 𝐻0 + 𝜆𝑉

𝐻𝜆 = ℎ𝜎3𝑧 + 𝜆( 𝐽1𝜎1𝑥𝜎3𝑥 + 𝐽3𝜎2𝑥𝜎3𝑥)

𝐽1 = 𝐽3 = 1, ℎ = 4.5

𝑇 = 100, 𝐿 = 54

෩𝐻𝜆 = 𝑈𝜆
†𝐻𝜆𝑈𝜆

|𝜓12 𝑡 = 1 ⟩ = 𝑒−𝑖𝒫 ෩𝐻𝜇𝒫|𝜓12 𝑡 = 0 ⟩
𝒫 |𝜓𝑡𝑜𝑡(𝑡 = 1)⟩ = 𝒫 𝑒−𝑖 ෩𝐻𝜇 |𝜓12(𝑡 = 0)⟩ ⊗ |03⟩
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𝐻𝜆 =෍
𝑖=1

𝑁

(𝜎𝑖𝑥𝜎𝑖+1𝑥 + 𝜎𝑖
𝑦𝜎𝑖+1

𝑦 + ℎ 𝜎𝑖𝑧 )

+𝜆 ෍
𝑖=1

𝑁

𝜎𝑖𝑥

𝑚 = ⟨෍
𝑖

𝑁

𝜎𝑖𝑧⟩

𝑁 = 4, 𝑇 = 100,
𝐿 = 210, ℎ = 4.5, 𝜆 = 1

෩𝐻𝜆 = 𝑈𝜆
†𝐻𝜆𝑈𝜆
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𝐻0 = 2𝕀 + 𝜎1z + 𝜎2𝑧

V = v1 𝜎1x + v2 𝜎2x + v3𝜎1
y +

+ v4 𝜎2
y + v5𝜎1x ⊗ 𝜎2x + v6𝜎1x ⊗ 𝜎2

y

+ v7𝜎1
y ⊗ 𝜎2x + v8𝜎1

y ⊗ 𝜎2
y

𝑣𝑖 ∈ (0, 1) randomly chosen

𝑇 = 100, 𝑆 = 100, 𝐿 = 15

No sectors & Universal Ansatz
↓

Diagonalization

𝜇
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Noise Resilient Variational
Quantum Classical Optimization

• convergence speed of variational hybrid 
quantum-classical optimization algorithms

• Bounded by two competing terms

• Accuracy may actually be higher in some 
noisy regimes

• Open question: obtain Fisher efficient 
estimators of the optimal parameters

https://doi.org/10.1103/PhysRevA.102.052414
Gentini, Cuccoli, Pirandola, Verrucchi, Banchi

Variational Approximation of 
Low-Energy Hamiltonians on 

Real Quantum Hardware 

• Diagonalization or Block
diagonalization

• Scalable and NISQ suitable

• Tested it on 3 models, one of them
on quantum Hardware, concluding
that connectivity is crucial

• Outcomes: Apply this method to 
complex many body Hamiltonians

Gentini, Cuccoli, Banchi
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Enhancing 
Quantum Generative 
Adversarial Networks 

for Noise Sensing 
Applications



Outline
╺ Generative Adversarial Networks

╺ Quantum Generative Adversarial Networks

╺ Training QGANs with noisy information

╺ SuperQGANs for noise-sensing 

"How to enhance quantum generative adversarial
learning of noisy information." Braccia, Caruso, 
Banchi New Journal of Physics 23.5 (2021): 053024.

"Quantum Noise Sensing by generating
Fake Noise." Braccia, Banchi, Caruso. arXiv
preprint arXiv:2107.08718.



Generative Adversarial 
Networks (GANs)



╺ https://thispersondoesnotexist.com/

Generative Adversarial 
Networks (GANs)



🕵🦹
Generator

(Counterfeiter)
Discriminator
(Detec2ve)

How do GANs work?

╺ Generator (G) and Discriminator (D)
play a turn based game against each 
other.

╺ Each turn G produces a fake copy of 
some target object (say an image), 
and D compares it to the real one 
deciding the probability of it being 
actually real.

╺ After each turn G uses D’s feedback 
to improve its counterfeiting ability, 
and D uses G’s fake samples to 
improve its discrimination strategy

╺ Nash’s game theory ensures this 
process will end with G being able to 
completely fool D



🕵🦹
Each turn G produces a fake copy of some 
target object (say an image), and D 
compares it to the real one deciding the 
probability of it being actually real.



🕵🦹
After each turn G uses D’s feedback to 
improve its counterfeiting ability, and D uses 
G’s fake samples to improve its discrimination 
strategy



🕵🦹
Nash’s game theory ensures this process 
will end with G being able to completely 
fool D





Discriminator’s output is a 
continuous function of the agents’ 
parameters, use it to build a score 
function

We can differentiate w.r.t. them and 
apply backpropagation algorithms.

𝑝(𝑅𝑒𝑎𝑙|𝑑𝑎𝑡𝑎)

𝑝 𝐹𝑎𝑘𝑒 𝑑𝑎𝑡𝑎 = 1− 𝑝 𝑅𝑒𝑎𝑙 𝑑𝑎𝑡𝑎

Real Data

Fake Data

Fake

RealGenerator

Discriminator



Quantum GANs (QGANs)

🕵🦹

PQCs



Quantum Generative Adversarial Games

• D: two-outcomes POVM {𝑇, 𝐹 = 𝐼 − 𝑇}

• G: quantum state generator 𝜌 = 𝜌!

• Real data: quantum state 𝜎 = 𝜌"

“Quantum Generative Adversarial Learning” S. Lloyd, C. Weedbrook. Physical review letters, 121(4), 040502

Strategies
• D: maximize 𝑝 𝑇 𝑅 − 𝑝(𝑇|𝐹) = 𝑇𝑟[𝑇 𝜌" − 𝜌! ]

• G: maximize 𝑝 𝑇 𝐹 = 𝑇𝑟[𝑇𝜌!]

Min-Max Problem
min
!!

max
"
𝑆(𝑇, 𝜌#) = min

!!
max
"
𝑇𝑟 𝑇 𝜌$ − 𝜌#

= min
!!

max
"
𝑝 𝑇 𝑅 − 𝑝(𝑇|𝐹)



Quantum Generative Adversarial Games

Min-Max Problem
min
!!

max
"
𝑇𝑟 𝑆 𝑇, 𝜌# = min

!!
max
"
𝑇𝑟 𝑇 𝜌$ − 𝜌#

= min
!!

max
"
𝑝 𝑇 𝑅 − 𝑝(𝑇|𝐹)

“Quantum Generative Adversarial Learning” S. Lloyd, C. Weedbrook. Physical review letters, 121(4), 040502

Positive 
Operator s.t. 
𝑇 # ≤ 1

Quantum States 
(density
matrices)

Compact and 
Covex Sets



Possible Quantum 
Advantages

v Quantum processors 
can compress 𝑁
dimensional feature 
vectors over log𝑁
qubits

v If the classical 
optimization 
algorithm takes 
𝑂(𝑝𝑜𝑙𝑦(𝑁)) time to run, 
the quantum version 
would ideally require 
only 𝑂(𝑝𝑜𝑙𝑦(log(𝑁)))
so.

v For classical models 
such as neural 
networks, learning 
quantum 
distributions of data is 
exponentially costly, 
whereas quantum 
ones can learn them 
natively.



POVM measurement via Naimark Theorem

T = 𝑇𝑟! 0 !⟨0| ⊗ 𝐼"[𝐷( 0 ! 0 ⊗ 𝐼" 𝐷#]

Two-outcomes POVM, single ancilla qubit!

0 !⟨0| =
$$%&$
'

𝑓 𝜃 = 0 𝑈# 𝜃 ;𝑂𝑈 𝜃 0

𝜕(𝑓 =
𝑓 𝜃 + 𝜋2 − 𝑓(𝜃 − 𝜋2)

2

Parameter Shift Rule

s.t. all gates appearing in 𝑈 are generated by Pauli matrices

Pure states QGAN

𝜃⃗ ← 𝜃⃗ − 𝜂∇!𝑓Gradient Descent (GD)

𝑝(𝑇|𝑅/𝐺) = %! &#
'

Schuld, Maria, et al. "Evaluating analytic 
gradients on quantum hardware." Physical 
Review A 99.3 (2019): 032331.



Everything goes fine!



𝜓 → 𝜌 ∈ 𝐿𝑖𝑛& 𝐻 𝑠. 𝑡. 𝑇𝑟 𝜌 = 1

𝜌 =
1
2
𝐼 + 𝑟 ⋅ 𝜎⃗ , 0 ≤ 𝑟 ≤ 1

Π( =
1
2
𝑑)𝐼 + 𝑑 ⋅ 𝜎⃗ , 𝑑) ≥ |𝑑|

𝑆 Π% , 𝜌& =
𝑑 ⋅ (𝑟 − 𝑔⃗)

2
GD, ADAM

LIMIT CYCLES !!!

Quadratic function
of Bloch vectors

Recall mixed states are described by density matrices

Qubit: the interior of the Bloch ball is accessible

POVM elements can be described analogously

QGAN Score Function reads:

What is up with mixed states?

"How to enhance quantum generative adversarial learning of noisy information." Braccia, Caruso, Banchi New 
Journal of Physics 23.5 (2021): 053024.



All we lack is some OPTIMISM!

𝜃⃗"#$ ← 𝜃⃗" − 2𝜂∇!
" 𝑆 + 𝜂∇!

"%$S

Optimistic Mirror Descent (OMD)
Players exploit knowledge of foe’s
strategy

No more convergence issues!

"How to enhance quantum generative adversarial learning of noisy information." Braccia, Caruso, Banchi New 
Journal of Physics 23.5 (2021): 053024.

Daskalakis, Constantinos, et al. 
"Training gans with optimism."
arXiv:1711.00141 (2017).



SuperQGANs for 
Noise Sensing



Nowadays quantum processors are Noisy (and Small)…

𝜓&' → 𝜓()" = 𝑈|𝜓&'⟩ 𝜓&' → 𝜌()" = Φ(|𝜓&'⟩⟨𝜓&'|)

NISQ devices

Φ𝑈𝜓'( 𝜓)*+ 𝜓'( 𝜌)*+

𝐸

Expectation vs Reality



Φ 𝜌 =O
*

𝐾*𝜌K*
+ , O

*

𝐾*
+ 𝐾* = 𝐼

Φ 𝜌 = Tr,[𝑈-, 𝜌- ⊗𝜔, 𝑈-,
+ ]

CPTP maps Φ

• Linear: ∑* 𝑝*𝜌* → ∑* 𝑝𝑖Φ(𝜌*)
• Trace Preserving
• Positive (preserve positivity of 𝜌)

Stinespring representation

Kraus representation

Composition of channels:

• «Parallel», different
systems pass through
𝑛 copies of the 
channel

• «Series», the same
system is processed 𝑛
times by the channel

= Φ⊗⋯⊗Φ = Φ⊗*

= Φ ∘ ⋯∘ Φ = Φ*

One would expect

Quantum Channels

Φ

Φ

Φ Φ



≠ Φ⊗9

≠ Φ9

Most often instead

Quantum Memory Channels

Memory channel with 𝑛 uses

Φ(")

Φ

Φ

Φ ΦSpatial memory
(cross-talk)

Temporal memory



Pauli Channels are exceptionally good at describing realistic noise models

Φ(+) 𝜌 =:
-

𝑝-𝜎-𝜌𝜎-
𝜎- = 𝜎-+ ⊗𝜎-, ⊗⋯⊗𝜎--

𝑝- = 𝑝-+𝑝-,⋯𝑝-- → "𝑚𝑒𝑚𝑜𝑟𝑦𝑙𝑒𝑠𝑠 𝑐ℎ𝑎𝑛𝑛𝑒𝑙"

Pauli Channels

Random Unitary Channels

Φ 𝜌 =F
.

𝑝.𝑈.𝜌𝑈.
#

System undergoes evolution 𝑈. with probability 𝑝.

Pauli Channels

Pauli word

𝑝- ≠ 𝑝-+𝑝-,⋯𝑝-- → "𝑚𝑒𝑚𝑜𝑟𝑦 (𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑) 𝑐ℎ𝑎𝑛𝑛𝑒𝑙"

This is the most common scenario, we want to characterize correlations!

𝜎- = 𝜎-+ ∘ 𝜎-, ∘ ⋯ ∘ 𝜎--

Knill, Emanuel. "Quantum 
computing with realistically noisy 
devices." Nature 434.7029 
(2005): 39-44.



Spatially Correlated Noise:
• 𝐷. prepares a probe state
• Real or Fake noisy channel Φ"/! is applied
• 𝐷0 implements measuring POVM

Temporally Correlated Noise:
• General Quantum Comb scheme is applied
• Comb 𝐷 interacts with noisy Real/Fake 

channel at each of the 𝑛 intermediate times
• A final map entangles 𝐷’s comb with the 

measurement ancilla qubit

SuperQGANs
setup

"Quantum Noise Sensing by generating Fake Noise." Braccia, Banchi, Caruso. arXiv preprint arXiv:2107.08718.



SuperQGANs
performance

• Since channel outputs are 
mixed, Optimistic strategy 
comes in handy

• Great advantage in using
QCNN for the POVM-
implementing PQC

• Method does not use any
approximation, there is
room for tweakings and 
speedups!

"Quantum Noise Sensing by generating Fake Noise." Braccia, Banchi, Caruso. arXiv preprint arXiv:2107.08718.
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Correlation model

SuperQGANs
tackling correlations

First, learn single use 
channel Φ(-)

"Quantum Noise Sensing by generating Fake Noise." Braccia, Banchi, Caruso. arXiv preprint arXiv:2107.08718.

𝑝./
(') = 1 − 𝜇 𝑝.

(2)𝑝/
(2) + 𝜇𝑝.

(2)𝛿./
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𝑝./
(') = 1 − 𝜇 𝑝.

(2)𝑝/
(2) + 𝜇𝑝.

(2)𝛿./

Correlation model

SuperQGANs
tackling correlations

Then, use learnt «prior» 
𝑝'
(-) to check wether
Φ(/) = Φ/ (temporal), or 
Φ(/) = Φ⊗/ (spatial)

"Quantum Noise Sensing by generating Fake Noise." Braccia, Banchi, Caruso. arXiv preprint arXiv:2107.08718.
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SuperQGANs
tackling correlations

Constraining G to control 
only factorized error-rates 
and monitoring 
convergence failure is
another way to check for 
correlations

𝐷12(𝑃 𝑄 = O
3∈5

𝑃 𝑥 log(
𝑃(𝑥)
𝑄(𝑥)

)

"Quantum Noise Sensing by generating Fake Noise." Braccia, Banchi, Caruso. arXiv preprint arXiv:2107.08718.
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Outlooks

Adversarial game paradigm can be shaped to perform implicit
state/process tomography, what next?

v Find clever ways to exploit previously known structure of target 
state/noise

v Part from exact reconstruction and make QGAN/SuperQGAN scalable, 
e.g. by using Tensor Network representation of states/channels



Thank you for your attention!


